Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system

G. Ivády, L. Madar, E. Dzsudzsák, K. Koczok, J. Kappelmayer, V. Krulisova, M. Macek, A. Horváth, I. Balogh,

. 2018 ; 19 (1) : 158. [pub] 20180221

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033297

BACKGROUND: Current technologies in next-generation sequencing are offering high throughput reads at low costs, but still suffer from various sequencing errors. Although pyro- and ion semiconductor sequencing both have the advantage of delivering long and high quality reads, problems might occur when sequencing homopolymer-containing regions, since the repeating identical bases are going to incorporate during the same synthesis cycle, which leads to uncertainty in base calling. The aim of this study was to evaluate the analytical performance of a pyrosequencing-based next-generation sequencing system in detecting homopolymer sequences using homopolymer-preintegrated plasmid constructs and human DNA samples originating from patients with cystic fibrosis. RESULTS: In the plasmid system average correct genotyping was 95.8% in 4-mers, 87.4% in 5-mers and 72.1% in 6-mers. Despite the experienced low genotyping accuracy in 5- and 6-mers, it was possible to generate amplicons with more than a 90% adequate detection rate in every homopolymer tract. When homopolymers in the CFTR gene were sequenced average accuracy was 89.3%, but varied in a wide range (52.2 - 99.1%). In all but one case, an optimal amplicon-sequencing primer combination could be identified. In that single case (7A tract in exon 14 (c.2046_2052)), none of the tested primer sets produced the required analytical performance. CONCLUSIONS: Our results show that pyrosequencing is the most reliable in case of 4-mers and as homopolymer length gradually increases, accuracy deteriorates. With careful primer selection, the NGS system was able to correctly genotype all but one of the homopolymers in the CFTR gene. In conclusion, we configured a plasmid test system that can be used to assess genotyping accuracy of NGS devices and developed an accurate NGS assay for the molecular diagnosis of CF using self-designed primers for amplification and sequencing.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033297
003      
CZ-PrNML
005      
20181009110142.0
007      
ta
008      
181008s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-018-4544-x $2 doi
035    __
$a (PubMed)29466940
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ivády, Gergely $u Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
245    10
$a Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system / $c G. Ivády, L. Madar, E. Dzsudzsák, K. Koczok, J. Kappelmayer, V. Krulisova, M. Macek, A. Horváth, I. Balogh,
520    9_
$a BACKGROUND: Current technologies in next-generation sequencing are offering high throughput reads at low costs, but still suffer from various sequencing errors. Although pyro- and ion semiconductor sequencing both have the advantage of delivering long and high quality reads, problems might occur when sequencing homopolymer-containing regions, since the repeating identical bases are going to incorporate during the same synthesis cycle, which leads to uncertainty in base calling. The aim of this study was to evaluate the analytical performance of a pyrosequencing-based next-generation sequencing system in detecting homopolymer sequences using homopolymer-preintegrated plasmid constructs and human DNA samples originating from patients with cystic fibrosis. RESULTS: In the plasmid system average correct genotyping was 95.8% in 4-mers, 87.4% in 5-mers and 72.1% in 6-mers. Despite the experienced low genotyping accuracy in 5- and 6-mers, it was possible to generate amplicons with more than a 90% adequate detection rate in every homopolymer tract. When homopolymers in the CFTR gene were sequenced average accuracy was 89.3%, but varied in a wide range (52.2 - 99.1%). In all but one case, an optimal amplicon-sequencing primer combination could be identified. In that single case (7A tract in exon 14 (c.2046_2052)), none of the tested primer sets produced the required analytical performance. CONCLUSIONS: Our results show that pyrosequencing is the most reliable in case of 4-mers and as homopolymer length gradually increases, accuracy deteriorates. With careful primer selection, the NGS system was able to correctly genotype all but one of the homopolymers in the CFTR gene. In conclusion, we configured a plasmid test system that can be used to assess genotyping accuracy of NGS devices and developed an accurate NGS assay for the molecular diagnosis of CF using self-designed primers for amplification and sequencing.
650    _2
$a cystická fibróza $x genetika $7 D003550
650    _2
$a protein CFTR $x genetika $7 D019005
650    _2
$a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
650    _2
$a lidé $7 D006801
650    _2
$a plazmidy $7 D010957
650    _2
$a sekvenční analýza DNA $x metody $7 D017422
650    12
$a tandemové repetitivní sekvence $7 D020080
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a validační studie $7 D023361
700    1_
$a Madar, László $u Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
700    1_
$a Dzsudzsák, Erika $u Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
700    1_
$a Koczok, Katalin $u Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. Division of Clinical Genetics, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
700    1_
$a Kappelmayer, János $u Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
700    1_
$a Krulisova, Veronika $u Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.
700    1_
$a Macek, Milan $u Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.
700    1_
$a Horváth, Attila $u Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary.
700    1_
$a Balogh, István $u Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. balogh@med.unideb.hu. Division of Clinical Genetics, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. balogh@med.unideb.hu.
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 19, č. 1 (2018), s. 158
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29466940 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181009110630 $b ABA008
999    __
$a ok $b bmc $g 1340091 $s 1030291
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 19 $c 1 $d 158 $e 20180221 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...