-
Je něco špatně v tomto záznamu ?
Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies
AF. Hassan, R. Hrdina,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- adsorpce MeSH
- chemické látky znečišťující vodu chemie izolace a purifikace MeSH
- chitosan chemie izolace a purifikace MeSH
- hydroxyapatit chemie MeSH
- koncentrace vodíkových iontů MeSH
- nanokompozity chemie MeSH
- rtuť chemie izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m2/g. Static adsorption of Hg+2 was tested for the effect of adsorbent dosage, pH, time and initial Hg+2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg+2 considering the effect of bed height, flow rate and the effect of Hg+2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg+2 concentration with breakthrough time (tb) and exhaustion time (te) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg+2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033436
- 003
- CZ-PrNML
- 005
- 20181008122156.0
- 007
- ta
- 008
- 181008s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ijbiomac.2017.12.094 $2 doi
- 035 __
- $a (PubMed)29269012
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Hassan, Asaad F $u Department of Chemistry, Faculty of Science, University of Damanhour, Damanhour, Egypt; Central European Institute of Technology, Institute of Physics of Materials, Žižkova 22, CZ 61662 Brno, Czech Republic. Electronic address: asaad.abdelfatah.rus@cas.edu.om.
- 245 10
- $a Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies / $c AF. Hassan, R. Hrdina,
- 520 9_
- $a Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m2/g. Static adsorption of Hg+2 was tested for the effect of adsorbent dosage, pH, time and initial Hg+2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg+2 considering the effect of bed height, flow rate and the effect of Hg+2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg+2 concentration with breakthrough time (tb) and exhaustion time (te) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg+2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption.
- 650 _2
- $a adsorpce $7 D000327
- 650 _2
- $a chitosan $x chemie $x izolace a purifikace $7 D048271
- 650 _2
- $a hydroxyapatit $x chemie $7 D017886
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a rtuť $x chemie $x izolace a purifikace $7 D008628
- 650 _2
- $a nanokompozity $x chemie $7 D053761
- 650 _2
- $a chemické látky znečišťující vodu $x chemie $x izolace a purifikace $7 D014874
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hrdina, Radim $u Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Czech Republic.
- 773 0_
- $w MED00002295 $t International journal of biological macromolecules $x 1879-0003 $g Roč. 109, č. - (2018), s. 507-516
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29269012 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181008122643 $b ABA008
- 999 __
- $a ok $b bmc $g 1339460 $s 1030430
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 109 $c - $d 507-516 $e 20171219 $i 1879-0003 $m International journal of biological macromolecules $n Int J Biol Macromol $x MED00002295
- LZP __
- $a Pubmed-20181008