• Je něco špatně v tomto záznamu ?

Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies

AF. Hassan, R. Hrdina,

. 2018 ; 109 (-) : 507-516. [pub] 20171219

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033436

Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m2/g. Static adsorption of Hg+2 was tested for the effect of adsorbent dosage, pH, time and initial Hg+2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg+2 considering the effect of bed height, flow rate and the effect of Hg+2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg+2 concentration with breakthrough time (tb) and exhaustion time (te) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg+2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033436
003      
CZ-PrNML
005      
20181008122156.0
007      
ta
008      
181008s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ijbiomac.2017.12.094 $2 doi
035    __
$a (PubMed)29269012
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Hassan, Asaad F $u Department of Chemistry, Faculty of Science, University of Damanhour, Damanhour, Egypt; Central European Institute of Technology, Institute of Physics of Materials, Žižkova 22, CZ 61662 Brno, Czech Republic. Electronic address: asaad.abdelfatah.rus@cas.edu.om.
245    10
$a Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies / $c AF. Hassan, R. Hrdina,
520    9_
$a Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m2/g. Static adsorption of Hg+2 was tested for the effect of adsorbent dosage, pH, time and initial Hg+2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg+2 considering the effect of bed height, flow rate and the effect of Hg+2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg+2 concentration with breakthrough time (tb) and exhaustion time (te) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg+2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption.
650    _2
$a adsorpce $7 D000327
650    _2
$a chitosan $x chemie $x izolace a purifikace $7 D048271
650    _2
$a hydroxyapatit $x chemie $7 D017886
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a rtuť $x chemie $x izolace a purifikace $7 D008628
650    _2
$a nanokompozity $x chemie $7 D053761
650    _2
$a chemické látky znečišťující vodu $x chemie $x izolace a purifikace $7 D014874
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hrdina, Radim $u Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Czech Republic.
773    0_
$w MED00002295 $t International journal of biological macromolecules $x 1879-0003 $g Roč. 109, č. - (2018), s. 507-516
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29269012 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181008122643 $b ABA008
999    __
$a ok $b bmc $g 1339460 $s 1030430
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 109 $c - $d 507-516 $e 20171219 $i 1879-0003 $m International journal of biological macromolecules $n Int J Biol Macromol $x MED00002295
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...