-
Je něco špatně v tomto záznamu ?
How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms
TPJ. Krüger, P. Malý, MTA. Alexandre, T. Mančal, C. Büchel, R. van Grondelle,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1915 do Před 6 měsíci
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-01
Open Access Digital Library
od 1915-01-15
PubMed
29229806
DOI
10.1073/pnas.1714656115
Knihovny.cz E-zdroje
- MeSH
- fotosyntéza * MeSH
- rozsivky chemie metabolismus MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as fucoxanthin-chlorophyll proteins (FCPs), are an exception, displaying surprisingly weak excitonic coupling between their chlorophyll (Chl) a's, despite a high pigment density. Here, we show, using single-molecule spectroscopy, that the FCP complexes of Cyclotella meneghiniana switch frequently into stable, strongly emissive states shifted 4-10 nm toward the red. A few percent of isolated FCPa complexes and ∼20% of isolated FCPb complexes, on average, were observed to populate these previously unobserved states, percentages that agree with the steady-state fluorescence spectra of FCP ensembles. Thus, the complexes use their enhanced sensitivity to static disorder to increase their light-harvesting capability in a number of ways. A disordered exciton model based on the structure of the main plant light-harvesting complex explains the red-shifted emission by strong localization of the excitation energy on a single Chl a pigment in the terminal emitter domain due to very specific pigment orientations. We suggest that the specific construction of FCP gives the complex a unique strategy to ensure that its light-harvesting function remains robust in the fluctuating protein environment despite limited excitonic interactions.
Department of Physics and Astronomy Vrije Universiteit Amsterdam 1081 HV Amsterdam The Netherlands
Department of Physics University of Pretoria Hatfield 0028 South Africa
Faculty of Mathematics and Physics Charles University 121 16 Prague 2 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033476
- 003
- CZ-PrNML
- 005
- 20181010125509.0
- 007
- ta
- 008
- 181008s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1714656115 $2 doi
- 035 __
- $a (PubMed)29229806
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Krüger, Tjaart P J $u Department of Physics, University of Pretoria, Hatfield 0028, South Africa; tjaart.kruger@up.ac.za.
- 245 10
- $a How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms / $c TPJ. Krüger, P. Malý, MTA. Alexandre, T. Mančal, C. Büchel, R. van Grondelle,
- 520 9_
- $a Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as fucoxanthin-chlorophyll proteins (FCPs), are an exception, displaying surprisingly weak excitonic coupling between their chlorophyll (Chl) a's, despite a high pigment density. Here, we show, using single-molecule spectroscopy, that the FCP complexes of Cyclotella meneghiniana switch frequently into stable, strongly emissive states shifted 4-10 nm toward the red. A few percent of isolated FCPa complexes and ∼20% of isolated FCPb complexes, on average, were observed to populate these previously unobserved states, percentages that agree with the steady-state fluorescence spectra of FCP ensembles. Thus, the complexes use their enhanced sensitivity to static disorder to increase their light-harvesting capability in a number of ways. A disordered exciton model based on the structure of the main plant light-harvesting complex explains the red-shifted emission by strong localization of the excitation energy on a single Chl a pigment in the terminal emitter domain due to very specific pigment orientations. We suggest that the specific construction of FCP gives the complex a unique strategy to ensure that its light-harvesting function remains robust in the fluctuating protein environment despite limited excitonic interactions.
- 650 _2
- $a rozsivky $x chemie $x metabolismus $7 D017377
- 650 _2
- $a světlosběrné proteinové komplexy $x chemie $x metabolismus $7 D045342
- 650 12
- $a fotosyntéza $7 D010788
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Malý, Pavel $u Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic.
- 700 1_
- $a Alexandre, Maxime T A $u Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
- 700 1_
- $a Mančal, Tomáš $u Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic.
- 700 1_
- $a Büchel, Claudia $u Institute of Molecular Biosciences, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany.
- 700 1_
- $a van Grondelle, Rienk $u Department of Physics, University of Pretoria, Hatfield 0028, South Africa. Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 114, č. 52 (2017), s. E11063-E11071
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29229806 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181010125958 $b ABA008
- 999 __
- $a ok $b bmc $g 1340923 $s 1030470
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 114 $c 52 $d E11063-E11071 $e 20171211 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20181008