Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms

TPJ. Krüger, P. Malý, MTA. Alexandre, T. Mančal, C. Büchel, R. van Grondelle,

. 2017 ; 114 (52) : E11063-E11071. [pub] 20171211

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033476
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-01
Open Access Digital Library od 1915-01-15

Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as fucoxanthin-chlorophyll proteins (FCPs), are an exception, displaying surprisingly weak excitonic coupling between their chlorophyll (Chl) a's, despite a high pigment density. Here, we show, using single-molecule spectroscopy, that the FCP complexes of Cyclotella meneghiniana switch frequently into stable, strongly emissive states shifted 4-10 nm toward the red. A few percent of isolated FCPa complexes and ∼20% of isolated FCPb complexes, on average, were observed to populate these previously unobserved states, percentages that agree with the steady-state fluorescence spectra of FCP ensembles. Thus, the complexes use their enhanced sensitivity to static disorder to increase their light-harvesting capability in a number of ways. A disordered exciton model based on the structure of the main plant light-harvesting complex explains the red-shifted emission by strong localization of the excitation energy on a single Chl a pigment in the terminal emitter domain due to very specific pigment orientations. We suggest that the specific construction of FCP gives the complex a unique strategy to ensure that its light-harvesting function remains robust in the fluctuating protein environment despite limited excitonic interactions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033476
003      
CZ-PrNML
005      
20181010125509.0
007      
ta
008      
181008s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1714656115 $2 doi
035    __
$a (PubMed)29229806
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Krüger, Tjaart P J $u Department of Physics, University of Pretoria, Hatfield 0028, South Africa; tjaart.kruger@up.ac.za.
245    10
$a How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms / $c TPJ. Krüger, P. Malý, MTA. Alexandre, T. Mančal, C. Büchel, R. van Grondelle,
520    9_
$a Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as fucoxanthin-chlorophyll proteins (FCPs), are an exception, displaying surprisingly weak excitonic coupling between their chlorophyll (Chl) a's, despite a high pigment density. Here, we show, using single-molecule spectroscopy, that the FCP complexes of Cyclotella meneghiniana switch frequently into stable, strongly emissive states shifted 4-10 nm toward the red. A few percent of isolated FCPa complexes and ∼20% of isolated FCPb complexes, on average, were observed to populate these previously unobserved states, percentages that agree with the steady-state fluorescence spectra of FCP ensembles. Thus, the complexes use their enhanced sensitivity to static disorder to increase their light-harvesting capability in a number of ways. A disordered exciton model based on the structure of the main plant light-harvesting complex explains the red-shifted emission by strong localization of the excitation energy on a single Chl a pigment in the terminal emitter domain due to very specific pigment orientations. We suggest that the specific construction of FCP gives the complex a unique strategy to ensure that its light-harvesting function remains robust in the fluctuating protein environment despite limited excitonic interactions.
650    _2
$a rozsivky $x chemie $x metabolismus $7 D017377
650    _2
$a světlosběrné proteinové komplexy $x chemie $x metabolismus $7 D045342
650    12
$a fotosyntéza $7 D010788
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Malý, Pavel $u Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic.
700    1_
$a Alexandre, Maxime T A $u Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
700    1_
$a Mančal, Tomáš $u Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic.
700    1_
$a Büchel, Claudia $u Institute of Molecular Biosciences, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany.
700    1_
$a van Grondelle, Rienk $u Department of Physics, University of Pretoria, Hatfield 0028, South Africa. Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 114, č. 52 (2017), s. E11063-E11071
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29229806 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181010125958 $b ABA008
999    __
$a ok $b bmc $g 1340923 $s 1030470
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 114 $c 52 $d E11063-E11071 $e 20171211 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...