-
Je něco špatně v tomto záznamu ?
Evolution of the Sauropterygian Labyrinth with Increasingly Pelagic Lifestyles
JM. Neenan, T. Reich, SW. Evers, PS. Druckenmiller, DFAE. Voeten, JN. Choiniere, PM. Barrett, SE. Pierce, RBJ. Benson,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
Cell Press Free Archives
od 1995-01-01 do Před 1 rokem
Free Medical Journals
od 1995 do Před 1 rokem
- MeSH
- biologická evoluce * MeSH
- ekosystém * MeSH
- plavání MeSH
- plazi anatomie a histologie fyziologie MeSH
- počítačová rentgenová tomografie MeSH
- vnitřní ucho anatomie a histologie MeSH
- zkameněliny anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles.
Department of Earth Sciences Natural History Museum Cromwell Road London SW7 5BD UK
Department of Earth Sciences University of Oxford South Parks Road Oxford OX1 3AN UK
European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
Oxford University Museum of Natural History Parks Road Oxford OX1 3PW UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033479
- 003
- CZ-PrNML
- 005
- 20181023112506.0
- 007
- ta
- 008
- 181008s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2017.10.069 $2 doi
- 035 __
- $a (PubMed)29225027
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Neenan, James M $u Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. Electronic address: james.m.neenan@gmail.com.
- 245 10
- $a Evolution of the Sauropterygian Labyrinth with Increasingly Pelagic Lifestyles / $c JM. Neenan, T. Reich, SW. Evers, PS. Druckenmiller, DFAE. Voeten, JN. Choiniere, PM. Barrett, SE. Pierce, RBJ. Benson,
- 520 9_
- $a Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a biologická evoluce $7 D005075
- 650 _2
- $a vnitřní ucho $x anatomie a histologie $7 D007758
- 650 12
- $a ekosystém $7 D017753
- 650 _2
- $a zkameněliny $x anatomie a histologie $7 D005580
- 650 _2
- $a plazi $x anatomie a histologie $x fyziologie $7 D012104
- 650 _2
- $a plavání $7 D013550
- 650 _2
- $a počítačová rentgenová tomografie $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Reich, Tobias $u Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland.
- 700 1_
- $a Evers, Serjoscha W $u Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK.
- 700 1_
- $a Druckenmiller, Patrick S $u University of Alaska Museum and Department of Geology and Geophysics, University of Alaska Fairbanks, 907 Yukon Drive, Fairbanks, AK 99775, USA.
- 700 1_
- $a Voeten, Dennis F A E $u European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France; Department of Zoology and Laboratory of Ornithology, Palacký University, 17 listopadu 50, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Choiniere, Jonah N $u School of Geosciences and Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, Braamfontein 2000, South Africa.
- 700 1_
- $a Barrett, Paul M $u Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; School of Geosciences and Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, Braamfontein 2000, South Africa.
- 700 1_
- $a Pierce, Stephanie E $u Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- 700 1_
- $a Benson, Roger B J $u Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK; School of Geosciences and Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, Braamfontein 2000, South Africa.
- 773 0_
- $w MED00006482 $t Current biology CB $x 1879-0445 $g Roč. 27, č. 24 (2017), s. 3852-3858.e3
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29225027 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181023113013 $b ABA008
- 999 __
- $a ok $b bmc $g 1340168 $s 1030473
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 27 $c 24 $d 3852-3858.e3 $e 20171207 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- LZP __
- $a Pubmed-20181008