Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Evolution of the Sauropterygian Labyrinth with Increasingly Pelagic Lifestyles

JM. Neenan, T. Reich, SW. Evers, PS. Druckenmiller, DFAE. Voeten, JN. Choiniere, PM. Barrett, SE. Pierce, RBJ. Benson,

. 2017 ; 27 (24) : 3852-3858.e3. [pub] 20171207

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033479

Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033479
003      
CZ-PrNML
005      
20181023112506.0
007      
ta
008      
181008s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cub.2017.10.069 $2 doi
035    __
$a (PubMed)29225027
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Neenan, James M $u Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. Electronic address: james.m.neenan@gmail.com.
245    10
$a Evolution of the Sauropterygian Labyrinth with Increasingly Pelagic Lifestyles / $c JM. Neenan, T. Reich, SW. Evers, PS. Druckenmiller, DFAE. Voeten, JN. Choiniere, PM. Barrett, SE. Pierce, RBJ. Benson,
520    9_
$a Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles.
650    _2
$a zvířata $7 D000818
650    12
$a biologická evoluce $7 D005075
650    _2
$a vnitřní ucho $x anatomie a histologie $7 D007758
650    12
$a ekosystém $7 D017753
650    _2
$a zkameněliny $x anatomie a histologie $7 D005580
650    _2
$a plazi $x anatomie a histologie $x fyziologie $7 D012104
650    _2
$a plavání $7 D013550
650    _2
$a počítačová rentgenová tomografie $7 D014057
655    _2
$a časopisecké články $7 D016428
700    1_
$a Reich, Tobias $u Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland.
700    1_
$a Evers, Serjoscha W $u Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK.
700    1_
$a Druckenmiller, Patrick S $u University of Alaska Museum and Department of Geology and Geophysics, University of Alaska Fairbanks, 907 Yukon Drive, Fairbanks, AK 99775, USA.
700    1_
$a Voeten, Dennis F A E $u European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France; Department of Zoology and Laboratory of Ornithology, Palacký University, 17 listopadu 50, 771 46 Olomouc, Czech Republic.
700    1_
$a Choiniere, Jonah N $u School of Geosciences and Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, Braamfontein 2000, South Africa.
700    1_
$a Barrett, Paul M $u Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; School of Geosciences and Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, Braamfontein 2000, South Africa.
700    1_
$a Pierce, Stephanie E $u Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
700    1_
$a Benson, Roger B J $u Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK; School of Geosciences and Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, Braamfontein 2000, South Africa.
773    0_
$w MED00006482 $t Current biology CB $x 1879-0445 $g Roč. 27, č. 24 (2017), s. 3852-3858.e3
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29225027 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181023113013 $b ABA008
999    __
$a ok $b bmc $g 1340168 $s 1030473
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 27 $c 24 $d 3852-3858.e3 $e 20171207 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...