-
Je něco špatně v tomto záznamu ?
Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging
T. Lukeš, D. Glatzová, Z. Kvíčalová, F. Levet, A. Benda, S. Letschert, M. Sauer, T. Brdička, T. Lasser, M. Cebecauer,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
- MeSH
- algoritmy MeSH
- antigeny CD4 genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fluorescenční barviva MeSH
- fluorescenční mikroskopie metody statistika a číselné údaje MeSH
- Jurkat buňky MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- mutantní proteiny genetika metabolismus MeSH
- optické zobrazování metody statistika a číselné údaje MeSH
- shluková analýza MeSH
- T-lymfocyty imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Quantitative approaches for characterizing molecular organization of cell membrane molecules under physiological and pathological conditions profit from recently developed super-resolution imaging techniques. Current tools employ statistical algorithms to determine clusters of molecules based on single-molecule localization microscopy (SMLM) data. These approaches are limited by the ability of SMLM techniques to identify and localize molecules in densely populated areas and experimental conditions of sample preparation and image acquisition. We have developed a robust, model-free, quantitative clustering analysis to determine the distribution of membrane molecules that excels in densely labeled areas and is tolerant to various experimental conditions, i.e. multiple-blinking or high blinking rates. The method is based on a TIRF microscope followed by a super-resolution optical fluctuation imaging (SOFI) analysis. The effectiveness and robustness of the method is validated using simulated and experimental data investigating nanoscale distribution of CD4 glycoprotein mutants in the plasma membrane of T cells.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033526
- 003
- CZ-PrNML
- 005
- 20181009110326.0
- 007
- ta
- 008
- 181008s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-017-01857-x $2 doi
- 035 __
- $a (PubMed)29170394
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lukeš, Tomáš $u Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, STI-IBI, CH-1015, Lausanne, Switzerland. Department of Radioelectronics, FEE, Czech Technical University in Prague, 166 27, Prague, Czech Republic.
- 245 10
- $a Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging / $c T. Lukeš, D. Glatzová, Z. Kvíčalová, F. Levet, A. Benda, S. Letschert, M. Sauer, T. Brdička, T. Lasser, M. Cebecauer,
- 520 9_
- $a Quantitative approaches for characterizing molecular organization of cell membrane molecules under physiological and pathological conditions profit from recently developed super-resolution imaging techniques. Current tools employ statistical algorithms to determine clusters of molecules based on single-molecule localization microscopy (SMLM) data. These approaches are limited by the ability of SMLM techniques to identify and localize molecules in densely populated areas and experimental conditions of sample preparation and image acquisition. We have developed a robust, model-free, quantitative clustering analysis to determine the distribution of membrane molecules that excels in densely labeled areas and is tolerant to various experimental conditions, i.e. multiple-blinking or high blinking rates. The method is based on a TIRF microscope followed by a super-resolution optical fluctuation imaging (SOFI) analysis. The effectiveness and robustness of the method is validated using simulated and experimental data investigating nanoscale distribution of CD4 glycoprotein mutants in the plasma membrane of T cells.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a antigeny CD4 $x genetika $x metabolismus $7 D015704
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a fluorescenční barviva $7 D005456
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a Jurkat buňky $7 D019169
- 650 _2
- $a membránové proteiny $x genetika $x metabolismus $7 D008565
- 650 _2
- $a fluorescenční mikroskopie $x metody $x statistika a číselné údaje $7 D008856
- 650 _2
- $a mutantní proteiny $x genetika $x metabolismus $7 D050505
- 650 _2
- $a optické zobrazování $x metody $x statistika a číselné údaje $7 D061848
- 650 _2
- $a T-lymfocyty $x imunologie $x metabolismus $7 D013601
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Glatzová, Daniela $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23, Prague, Czech Republic. Laboratory of Leukocyte Signalling, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague, Czech Republic.
- 700 1_
- $a Kvíčalová, Zuzana $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23, Prague, Czech Republic.
- 700 1_
- $a Levet, Florian $u Interdisciplinary Institute for Neuroscience, UMR 5297 CNRS Université de Bordeaux, 33077, Bordeaux, France. Bordeaux Imaging Center, UMS 3420 CNRS Université de Bordeaux US4 INSERM, 33077, Bordeaux, France.
- 700 1_
- $a Benda, Aleš $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23, Prague, Czech Republic. Imaging Methods Core Facility, BIOCEV, 252 50, Vestec u Prahy, Czech Republic.
- 700 1_
- $a Letschert, Sebastian $u Department of Biotechnology and Biophysics, Biocenter, University of Wuerzburg, D-97074, Wuerzburg, Germany.
- 700 1_
- $a Sauer, Markus $u Department of Biotechnology and Biophysics, Biocenter, University of Wuerzburg, D-97074, Wuerzburg, Germany.
- 700 1_
- $a Brdička, Tomáš $u Laboratory of Leukocyte Signalling, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague, Czech Republic.
- 700 1_
- $a Lasser, Theo $u Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, STI-IBI, CH-1015, Lausanne, Switzerland. theo.lasser@epfl.ch.
- 700 1_
- $a Cebecauer, Marek $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23, Prague, Czech Republic. marek.cebecauer@jh-inst.cas.cz.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 8, č. 1 (2017), s. 1731
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29170394 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181009110814 $b ABA008
- 999 __
- $a ok $b bmc $g 1340193 $s 1030520
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 8 $c 1 $d 1731 $e 20171123 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20181008