• Je něco špatně v tomto záznamu ?

Magnetic Nanoparticles for the Delivery of Dapagliflozin to Hypoxic Tumors: Physicochemical Characterization and Cell Studies

A. Angelopoulou, E. Voulgari, A. Kolokithas-Ntoukas, A. Bakandritsos, K. Avgoustakis,

. 2018 ; 19 (2) : 621-633. [pub] 20170918

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033714

In solid tumors, hypoxia (lack of oxygen) is developed, which leads to the development of resistance of tumor cells to chemotherapy and radiotherapy through various mechanisms. Nevertheless, hypoxic cells are particularly vulnerable when glycolysis is inhibited. For this reason, in this study, the development of magnetically targetable nanocarriers of the sodium-glucose transporter protein (SGLT2) inhibitor dapagliflozin (DAPA) was developed for the selective delivery of DAPA in tumors. This nanomedicine in combination with radiotherapy or chemotherapy should be useful for effective treatment of hypoxic tumors. The magnetic nanoparticles consisted of a magnetic iron oxide core and a poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (PMAA-g-PEGMA) polymeric shell. The drug (dapagliflozin) molecules were conjugated on the surface of these nanoparticles via in vivo hydrolysable ester bonds. The nanoparticles had an average size of ~ 70 nm and exhibited a DAPA loading capacity 10.75% (w/w) for a theoretical loading 21.68% (w/w). The magnetic responsiveness of the nanoparticles was confirmed with magnetophoresis experiments. The dapagliflozin-loaded magnetic nanoparticles exhibited excellent colloidal stability in aqueous and biological media. Minimal (less than 15% in 24 h) drug release from the nanoparticles occurred in physiological pH 7.4; however, drug release was significantly accelerated in pH 5.5. Drug release was also accelerated (triggered) under the influence of an alternating magnetic field. The DAPA-loaded nanoparticles exhibited higher in vitro anticancer activity (cytotoxicity) against A549 human lung cancer cells than free DAPA. The application of an external magnetic field gradient increased the uptake of nanoparticles by cells, leading to increased cytotoxicity. The results justify further in vivo studies of the suitability of DAPA-loaded magnetic nanoparticles for the treatment of hypoxic tumors.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033714
003      
CZ-PrNML
005      
20181017150017.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1208/s12249-017-0874-2 $2 doi
035    __
$a (PubMed)28924948
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Angelopoulou, Athina $u Department of Pharmacy, Medical School, University of Patras, 26504, Patras, Greece.
245    10
$a Magnetic Nanoparticles for the Delivery of Dapagliflozin to Hypoxic Tumors: Physicochemical Characterization and Cell Studies / $c A. Angelopoulou, E. Voulgari, A. Kolokithas-Ntoukas, A. Bakandritsos, K. Avgoustakis,
520    9_
$a In solid tumors, hypoxia (lack of oxygen) is developed, which leads to the development of resistance of tumor cells to chemotherapy and radiotherapy through various mechanisms. Nevertheless, hypoxic cells are particularly vulnerable when glycolysis is inhibited. For this reason, in this study, the development of magnetically targetable nanocarriers of the sodium-glucose transporter protein (SGLT2) inhibitor dapagliflozin (DAPA) was developed for the selective delivery of DAPA in tumors. This nanomedicine in combination with radiotherapy or chemotherapy should be useful for effective treatment of hypoxic tumors. The magnetic nanoparticles consisted of a magnetic iron oxide core and a poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (PMAA-g-PEGMA) polymeric shell. The drug (dapagliflozin) molecules were conjugated on the surface of these nanoparticles via in vivo hydrolysable ester bonds. The nanoparticles had an average size of ~ 70 nm and exhibited a DAPA loading capacity 10.75% (w/w) for a theoretical loading 21.68% (w/w). The magnetic responsiveness of the nanoparticles was confirmed with magnetophoresis experiments. The dapagliflozin-loaded magnetic nanoparticles exhibited excellent colloidal stability in aqueous and biological media. Minimal (less than 15% in 24 h) drug release from the nanoparticles occurred in physiological pH 7.4; however, drug release was significantly accelerated in pH 5.5. Drug release was also accelerated (triggered) under the influence of an alternating magnetic field. The DAPA-loaded nanoparticles exhibited higher in vitro anticancer activity (cytotoxicity) against A549 human lung cancer cells than free DAPA. The application of an external magnetic field gradient increased the uptake of nanoparticles by cells, leading to increased cytotoxicity. The results justify further in vivo studies of the suitability of DAPA-loaded magnetic nanoparticles for the treatment of hypoxic tumors.
650    _2
$a buňky A549 $7 D000072283
650    _2
$a benzhydrylové sloučeniny $x aplikace a dávkování $x chemie $7 D001559
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a nosiče léků $x aplikace a dávkování $x chemie $7 D004337
650    _2
$a lékové transportní systémy $x metody $7 D016503
650    _2
$a uvolňování léčiv $7 D065546
650    _2
$a glukosidy $x aplikace a dávkování $x chemie $7 D005960
650    _2
$a lidé $7 D006801
650    _2
$a magnetické nanočástice $x aplikace a dávkování $x chemie $7 D058185
650    _2
$a nanomedicína $x metody $7 D050997
650    _2
$a transportér 2 pro sodík a glukózu $7 D051297
650    _2
$a nádorová hypoxie $x účinky léků $x fyziologie $7 D000072258
650    _2
$a glifloziny $7 D000077203
655    _2
$a časopisecké články $7 D016428
700    1_
$a Voulgari, Efstathia $u Department of Pharmacy, Medical School, University of Patras, 26504, Patras, Greece.
700    1_
$a Kolokithas-Ntoukas, Argiris $u Department of Materials Science, University of Patras, 26504, Patras, Greece.
700    1_
$a Bakandritsos, Aristides $u Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic.
700    1_
$a Avgoustakis, Konstantinos $u Department of Pharmacy, Medical School, University of Patras, 26504, Patras, Greece. avgoust@upatras.gr.
773    0_
$w MED00008281 $t AAPS PharmSciTech $x 1530-9932 $g Roč. 19, č. 2 (2018), s. 621-633
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28924948 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181017150516 $b ABA008
999    __
$a ok $b bmc $g 1339563 $s 1030708
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 19 $c 2 $d 621-633 $e 20170918 $i 1530-9932 $m AAPS PharmSciTech $n AAPS PharmSciTech $x MED00008281
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...