Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Dynamic classification using credible intervals in longitudinal discriminant analysis

DM. Hughes, A. Komárek, LJ. Bonnett, G. Czanner, M. García-Fiñana,

. 2017 ; 36 (24) : 3858-3874. [pub] 20170801

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033795

Recently developed methods of longitudinal discriminant analysis allow for classification of subjects into prespecified prognostic groups using longitudinal history of both continuous and discrete biomarkers. The classification uses Bayesian estimates of the group membership probabilities for each prognostic group. These estimates are derived from a multivariate generalised linear mixed model of the biomarker's longitudinal evolution in each of the groups and can be updated each time new data is available for a patient, providing a dynamic (over time) allocation scheme. However, the precision of the estimated group probabilities differs for each patient and also over time. This precision can be assessed by looking at credible intervals for the group membership probabilities. In this paper, we propose a new allocation rule that incorporates credible intervals for use in context of a dynamic longitudinal discriminant analysis and show that this can decrease the number of false positives in a prognostic test, improving the positive predictive value. We also establish that by leaving some patients unclassified for a certain period, the classification accuracy of those patients who are classified can be improved, giving increased confidence to clinicians in their decision making. Finally, we show that determining a stopping rule dynamically can be more accurate than specifying a set time point at which to decide on a patient's status. We illustrate our methodology using data from patients with epilepsy and show how patients who fail to achieve adequate seizure control are more accurately identified using credible intervals compared to existing methods.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033795
003      
CZ-PrNML
005      
20181015113143.0
007      
ta
008      
181008s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/sim.7397 $2 doi
035    __
$a (PubMed)28762546
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hughes, David M $u Department of Biostatistics, University of Liverpool, Liverpool, U.K.
245    10
$a Dynamic classification using credible intervals in longitudinal discriminant analysis / $c DM. Hughes, A. Komárek, LJ. Bonnett, G. Czanner, M. García-Fiñana,
520    9_
$a Recently developed methods of longitudinal discriminant analysis allow for classification of subjects into prespecified prognostic groups using longitudinal history of both continuous and discrete biomarkers. The classification uses Bayesian estimates of the group membership probabilities for each prognostic group. These estimates are derived from a multivariate generalised linear mixed model of the biomarker's longitudinal evolution in each of the groups and can be updated each time new data is available for a patient, providing a dynamic (over time) allocation scheme. However, the precision of the estimated group probabilities differs for each patient and also over time. This precision can be assessed by looking at credible intervals for the group membership probabilities. In this paper, we propose a new allocation rule that incorporates credible intervals for use in context of a dynamic longitudinal discriminant analysis and show that this can decrease the number of false positives in a prognostic test, improving the positive predictive value. We also establish that by leaving some patients unclassified for a certain period, the classification accuracy of those patients who are classified can be improved, giving increased confidence to clinicians in their decision making. Finally, we show that determining a stopping rule dynamically can be more accurate than specifying a set time point at which to decide on a patient's status. We illustrate our methodology using data from patients with epilepsy and show how patients who fail to achieve adequate seizure control are more accurately identified using credible intervals compared to existing methods.
650    12
$a Bayesova věta $7 D001499
650    _2
$a klasifikace $x metody $7 D002965
650    _2
$a počítačová simulace $7 D003198
650    _2
$a rozhodování $7 D003657
650    _2
$a diskriminační analýza $7 D016002
650    _2
$a epilepsie $x diagnóza $x terapie $7 D004827
650    _2
$a lidé $7 D006801
650    _2
$a lineární modely $7 D016014
650    _2
$a longitudinální studie $7 D008137
650    _2
$a multivariační analýza $7 D015999
650    12
$a pravděpodobnost $7 D011336
650    _2
$a prognóza $7 D011379
650    _2
$a indukce remise $7 D012074
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
700    1_
$a Komárek, Arnošt $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
700    1_
$a Bonnett, Laura J $u Department of Biostatistics, University of Liverpool, Liverpool, U.K.
700    1_
$a Czanner, Gabriela $u Department of Biostatistics, University of Liverpool, Liverpool, U.K. Department of Eye and Vision Science, University of Liverpool, Liverpool, U.K.
700    1_
$a García-Fiñana, Marta $u Department of Biostatistics, University of Liverpool, Liverpool, U.K.
773    0_
$w MED00004434 $t Statistics in medicine $x 1097-0258 $g Roč. 36, č. 24 (2017), s. 3858-3874
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28762546 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181015113639 $b ABA008
999    __
$a ok $b bmc $g 1340296 $s 1030789
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 36 $c 24 $d 3858-3874 $e 20170801 $i 1097-0258 $m Statistics in medicine $n Stat Med $x MED00004434
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...