-
Je něco špatně v tomto záznamu ?
Dynamic classification using credible intervals in longitudinal discriminant analysis
DM. Hughes, A. Komárek, LJ. Bonnett, G. Czanner, M. García-Fiñana,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
PubMed
28762546
DOI
10.1002/sim.7397
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta * MeSH
- diskriminační analýza MeSH
- epilepsie diagnóza terapie MeSH
- indukce remise MeSH
- klasifikace metody MeSH
- lidé MeSH
- lineární modely MeSH
- longitudinální studie MeSH
- multivariační analýza MeSH
- počítačová simulace MeSH
- pravděpodobnost * MeSH
- prognóza MeSH
- rozhodování MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Recently developed methods of longitudinal discriminant analysis allow for classification of subjects into prespecified prognostic groups using longitudinal history of both continuous and discrete biomarkers. The classification uses Bayesian estimates of the group membership probabilities for each prognostic group. These estimates are derived from a multivariate generalised linear mixed model of the biomarker's longitudinal evolution in each of the groups and can be updated each time new data is available for a patient, providing a dynamic (over time) allocation scheme. However, the precision of the estimated group probabilities differs for each patient and also over time. This precision can be assessed by looking at credible intervals for the group membership probabilities. In this paper, we propose a new allocation rule that incorporates credible intervals for use in context of a dynamic longitudinal discriminant analysis and show that this can decrease the number of false positives in a prognostic test, improving the positive predictive value. We also establish that by leaving some patients unclassified for a certain period, the classification accuracy of those patients who are classified can be improved, giving increased confidence to clinicians in their decision making. Finally, we show that determining a stopping rule dynamically can be more accurate than specifying a set time point at which to decide on a patient's status. We illustrate our methodology using data from patients with epilepsy and show how patients who fail to achieve adequate seizure control are more accurately identified using credible intervals compared to existing methods.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033795
- 003
- CZ-PrNML
- 005
- 20181015113143.0
- 007
- ta
- 008
- 181008s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/sim.7397 $2 doi
- 035 __
- $a (PubMed)28762546
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Hughes, David M $u Department of Biostatistics, University of Liverpool, Liverpool, U.K.
- 245 10
- $a Dynamic classification using credible intervals in longitudinal discriminant analysis / $c DM. Hughes, A. Komárek, LJ. Bonnett, G. Czanner, M. García-Fiñana,
- 520 9_
- $a Recently developed methods of longitudinal discriminant analysis allow for classification of subjects into prespecified prognostic groups using longitudinal history of both continuous and discrete biomarkers. The classification uses Bayesian estimates of the group membership probabilities for each prognostic group. These estimates are derived from a multivariate generalised linear mixed model of the biomarker's longitudinal evolution in each of the groups and can be updated each time new data is available for a patient, providing a dynamic (over time) allocation scheme. However, the precision of the estimated group probabilities differs for each patient and also over time. This precision can be assessed by looking at credible intervals for the group membership probabilities. In this paper, we propose a new allocation rule that incorporates credible intervals for use in context of a dynamic longitudinal discriminant analysis and show that this can decrease the number of false positives in a prognostic test, improving the positive predictive value. We also establish that by leaving some patients unclassified for a certain period, the classification accuracy of those patients who are classified can be improved, giving increased confidence to clinicians in their decision making. Finally, we show that determining a stopping rule dynamically can be more accurate than specifying a set time point at which to decide on a patient's status. We illustrate our methodology using data from patients with epilepsy and show how patients who fail to achieve adequate seizure control are more accurately identified using credible intervals compared to existing methods.
- 650 12
- $a Bayesova věta $7 D001499
- 650 _2
- $a klasifikace $x metody $7 D002965
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a rozhodování $7 D003657
- 650 _2
- $a diskriminační analýza $7 D016002
- 650 _2
- $a epilepsie $x diagnóza $x terapie $7 D004827
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a longitudinální studie $7 D008137
- 650 _2
- $a multivariační analýza $7 D015999
- 650 12
- $a pravděpodobnost $7 D011336
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a indukce remise $7 D012074
- 650 _2
- $a senzitivita a specificita $7 D012680
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Komárek, Arnošt $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
- 700 1_
- $a Bonnett, Laura J $u Department of Biostatistics, University of Liverpool, Liverpool, U.K.
- 700 1_
- $a Czanner, Gabriela $u Department of Biostatistics, University of Liverpool, Liverpool, U.K. Department of Eye and Vision Science, University of Liverpool, Liverpool, U.K.
- 700 1_
- $a García-Fiñana, Marta $u Department of Biostatistics, University of Liverpool, Liverpool, U.K.
- 773 0_
- $w MED00004434 $t Statistics in medicine $x 1097-0258 $g Roč. 36, č. 24 (2017), s. 3858-3874
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28762546 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181015113639 $b ABA008
- 999 __
- $a ok $b bmc $g 1340296 $s 1030789
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 36 $c 24 $d 3858-3874 $e 20170801 $i 1097-0258 $m Statistics in medicine $n Stat Med $x MED00004434
- LZP __
- $a Pubmed-20181008