Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Two-parameter bifurcations in LPA model

V. Hajnová, L. Přibylová,

. 2017 ; 75 (5) : 1235-1251. [pub] 20170310

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033980
E-zdroje Online Plný text

NLK ProQuest Central od 1997-11-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2005-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-11-01 do Před 1 rokem

The structured population LPA model is studied. The model describes flour beetle (Tribolium) population dynamics of four stage populations: eggs, larvae, pupae and adults with cannibalism between these stages. We concentrate on the case of non-zero cannibalistic rates of adults on eggs and adults on pupae and no cannibalism of larvae on eggs, but the results can be numerically continued to non-zero cannibalism of larvae on eggs. In this article two-parameter bifurcations in LPA model are analysed. Various stable and unstable invariant sets are found, different types of hysteresis are presented and abrupt changes in dynamics are simulated to explain the complicated way the system behaves near two-parameter bifurcation manifolds. The connections between strong 1:2 resonance and Chenciner bifurcations are presented as well as their very significant consequences to the dynamics of the Tribolium population. The hysteresis phenomena described is a generic phenomenon nearby the Chenciner bifurcation or the cusp bifurcation of the loop.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033980
003      
CZ-PrNML
005      
20181024165611.0
007      
ta
008      
181008s2017 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00285-017-1115-8 $2 doi
035    __
$a (PubMed)28283740
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Hajnová, Veronika $u Section of Applied Mathematics, Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
245    10
$a Two-parameter bifurcations in LPA model / $c V. Hajnová, L. Přibylová,
520    9_
$a The structured population LPA model is studied. The model describes flour beetle (Tribolium) population dynamics of four stage populations: eggs, larvae, pupae and adults with cannibalism between these stages. We concentrate on the case of non-zero cannibalistic rates of adults on eggs and adults on pupae and no cannibalism of larvae on eggs, but the results can be numerically continued to non-zero cannibalism of larvae on eggs. In this article two-parameter bifurcations in LPA model are analysed. Various stable and unstable invariant sets are found, different types of hysteresis are presented and abrupt changes in dynamics are simulated to explain the complicated way the system behaves near two-parameter bifurcation manifolds. The connections between strong 1:2 resonance and Chenciner bifurcations are presented as well as their very significant consequences to the dynamics of the Tribolium population. The hysteresis phenomena described is a generic phenomenon nearby the Chenciner bifurcation or the cusp bifurcation of the loop.
650    _2
$a zvířata $7 D000818
650    _2
$a chování zvířat $7 D001522
650    _2
$a kanibalismus $7 D002190
650    _2
$a matematické pojmy $7 D055641
650    12
$a biologické modely $7 D008954
650    _2
$a nelineární dynamika $7 D017711
650    _2
$a populační dynamika $x statistika a číselné údaje $7 D011157
650    _2
$a Tribolium $x růst a vývoj $x fyziologie $7 D014231
655    _2
$a časopisecké články $7 D016428
700    1_
$a Přibylová, Lenka $u Section of Applied Mathematics, Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic. pribylova@math.muni.cz.
773    0_
$w MED00002783 $t Journal of mathematical biology $x 1432-1416 $g Roč. 75, č. 5 (2017), s. 1235-1251
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28283740 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181024170119 $b ABA008
999    __
$a ok $b bmc $g 1340378 $s 1030974
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 75 $c 5 $d 1235-1251 $e 20170310 $i 1432-1416 $m Journal of mathematical biology $n J Math Biol $x MED00002783
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...