Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features

MA. Gebbie, H. Ishiwata, PJ. McQuade, V. Petrak, A. Taylor, C. Freiwald, JE. Dahl, RMK. Carlson, AA. Fokin, PR. Schreiner, ZX. Shen, M. Nesladek, NA. Melosh,

. 2018 ; 115 (33) : 8284-8289. [pub] 20180801

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc18034334
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-15
Open Access Digital Library od 1915-01-01

Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18034334
003      
CZ-PrNML
005      
20210310123852.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1803654115 $2 doi
035    __
$a (PubMed)30068609
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Gebbie, Matthew A $u Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
245    10
$a Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features / $c MA. Gebbie, H. Ishiwata, PJ. McQuade, V. Petrak, A. Taylor, C. Freiwald, JE. Dahl, RMK. Carlson, AA. Fokin, PR. Schreiner, ZX. Shen, M. Nesladek, NA. Melosh,
520    9_
$a Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Ishiwata, Hitoshi $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025. Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
700    1_
$a McQuade, Patrick J $u Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
700    1_
$a Petrak, Vaclav $u Institute of Physics of the Czech Academy of Sciences, CZ-18221 Prague, Czech Republic.
700    1_
$a Taylor, Andrew $u Institute of Physics of the Czech Academy of Sciences, CZ-18221 Prague, Czech Republic.
700    1_
$a Freiwald, Christopher $u Institute of Materials Research, University of Hasselt, B-3590 Diepenbeek, Belgium. Institute for Materials Research in Microelectronics, Interuniversity Microelectronics Centre, B-3590 Diepenbeek, Belgium.
700    1_
$a Dahl, Jeremy E $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
700    1_
$a Carlson, Robert M K $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
700    1_
$a Fokin, Andrey A $u Institute of Organic Chemistry, Justus Liebig University, D-35392 Giessen, Germany. Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, 03056 Kiev, Ukraine.
700    1_
$a Schreiner, Peter R $u Institute of Organic Chemistry, Justus Liebig University, D-35392 Giessen, Germany.
700    1_
$a Shen, Zhi-Xun $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025. Applied Physics, Stanford University, Stanford, CA 94305.
700    1_
$a Nesladek, Milos $u Institute of Materials Research, University of Hasselt, B-3590 Diepenbeek, Belgium. Institute for Materials Research in Microelectronics, Interuniversity Microelectronics Centre, B-3590 Diepenbeek, Belgium.
700    1_
$a Melosh, Nicholas A $u Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305; nmelosh@stanford.edu. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 115, č. 33 (2018), s. 8284-8289
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30068609 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20210310123848 $b ABA008
999    __
$a ind $b bmc $g 1341148 $s 1031328
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 115 $c 33 $d 8284-8289 $e 20180801 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...