-
Je něco špatně v tomto záznamu ?
Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features
MA. Gebbie, H. Ishiwata, PJ. McQuade, V. Petrak, A. Taylor, C. Freiwald, JE. Dahl, RMK. Carlson, AA. Fokin, PR. Schreiner, ZX. Shen, M. Nesladek, NA. Melosh,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
od 1915 do Před 6 měsíci
Freely Accessible Science Journals
od 1915 do Před 6 měsíci
PubMed Central
od 1915 do Před 6 měsíci
Europe PubMed Central
od 1915 do Před 6 měsíci
Open Access Digital Library
od 1915-01-15
Open Access Digital Library
od 1915-01-01
PubMed
30068609
DOI
10.1073/pnas.1803654115
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.
Department of Materials Science and Engineering Stanford University Stanford CA 94305
Institute of Organic Chemistry Justus Liebig University D 35392 Giessen Germany
Institute of Physics of the Czech Academy of Sciences CZ 18221 Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18034334
- 003
- CZ-PrNML
- 005
- 20210310123852.0
- 007
- ta
- 008
- 181008s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1803654115 $2 doi
- 035 __
- $a (PubMed)30068609
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Gebbie, Matthew A $u Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
- 245 10
- $a Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features / $c MA. Gebbie, H. Ishiwata, PJ. McQuade, V. Petrak, A. Taylor, C. Freiwald, JE. Dahl, RMK. Carlson, AA. Fokin, PR. Schreiner, ZX. Shen, M. Nesladek, NA. Melosh,
- 520 9_
- $a Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Ishiwata, Hitoshi $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025. Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
- 700 1_
- $a McQuade, Patrick J $u Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
- 700 1_
- $a Petrak, Vaclav $u Institute of Physics of the Czech Academy of Sciences, CZ-18221 Prague, Czech Republic.
- 700 1_
- $a Taylor, Andrew $u Institute of Physics of the Czech Academy of Sciences, CZ-18221 Prague, Czech Republic.
- 700 1_
- $a Freiwald, Christopher $u Institute of Materials Research, University of Hasselt, B-3590 Diepenbeek, Belgium. Institute for Materials Research in Microelectronics, Interuniversity Microelectronics Centre, B-3590 Diepenbeek, Belgium.
- 700 1_
- $a Dahl, Jeremy E $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
- 700 1_
- $a Carlson, Robert M K $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
- 700 1_
- $a Fokin, Andrey A $u Institute of Organic Chemistry, Justus Liebig University, D-35392 Giessen, Germany. Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, 03056 Kiev, Ukraine.
- 700 1_
- $a Schreiner, Peter R $u Institute of Organic Chemistry, Justus Liebig University, D-35392 Giessen, Germany.
- 700 1_
- $a Shen, Zhi-Xun $u Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025. Applied Physics, Stanford University, Stanford, CA 94305.
- 700 1_
- $a Nesladek, Milos $u Institute of Materials Research, University of Hasselt, B-3590 Diepenbeek, Belgium. Institute for Materials Research in Microelectronics, Interuniversity Microelectronics Centre, B-3590 Diepenbeek, Belgium.
- 700 1_
- $a Melosh, Nicholas A $u Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305; nmelosh@stanford.edu. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 115, č. 33 (2018), s. 8284-8289
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30068609 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20210310123848 $b ABA008
- 999 __
- $a ind $b bmc $g 1341148 $s 1031328
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 115 $c 33 $d 8284-8289 $e 20180801 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20181008