Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Modern and traditional approaches combined into an effective gray-box mathematical model of full-blood acid-base

F. Ježek, J. Kofránek,

. 2018 ; 15 (1) : 14. [pub] 20180910

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000389

BACKGROUND: The acidity of human body fluids, expressed by the pH, is physiologically regulated in a narrow range, which is required for the proper function of cellular metabolism. Acid-base disorders are common especially in intensive care, and the acid-base status is one of the vital clinical signs for the patient management. Because acid-base balance is connected to many bodily processes and regulations, complex mathematical models are needed to get insight into the mixed disorders and to act accordingly. The goal of this study is to develop a full-blood acid-base model, designed to be further integrated into more complex human physiology models. RESULTS: We have developed computationally simple and robust full-blood model, yet thorough enough to cover most of the common pathologies. Thanks to its simplicity and usage of Modelica language, it is suitable to be embedded within more elaborate systems. We achieved the simplification by a combination of behavioral Siggaard-Andersen's traditional approach for erythrocyte modeling and the mechanistic Stewart's physicochemical approach for plasma modeling. The resulting model is capable of providing variations in arterial pCO2, base excess, strong ion difference, hematocrit, plasma protein, phosphates and hemodilution/hemoconcentration, but insensitive to DPG and CO concentrations. CONCLUSIONS: This study presents a straightforward unification of Siggaard-Andersen's and Stewart's acid-base models. The resulting full-blood acid-base model is designed to be a core part of a complex dynamic whole-body acid-base and gas transfer model.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000389
003      
CZ-PrNML
005      
20190121105641.0
007      
ta
008      
190107s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12976-018-0086-9 $2 doi
035    __
$a (PubMed)30196793
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ježek, Filip $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic. filip.jezek@lf1.cuni.cz. Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U nemocnice 5, 128 00, Prague 2, Czech Republic. filip.jezek@lf1.cuni.cz.
245    10
$a Modern and traditional approaches combined into an effective gray-box mathematical model of full-blood acid-base / $c F. Ježek, J. Kofránek,
520    9_
$a BACKGROUND: The acidity of human body fluids, expressed by the pH, is physiologically regulated in a narrow range, which is required for the proper function of cellular metabolism. Acid-base disorders are common especially in intensive care, and the acid-base status is one of the vital clinical signs for the patient management. Because acid-base balance is connected to many bodily processes and regulations, complex mathematical models are needed to get insight into the mixed disorders and to act accordingly. The goal of this study is to develop a full-blood acid-base model, designed to be further integrated into more complex human physiology models. RESULTS: We have developed computationally simple and robust full-blood model, yet thorough enough to cover most of the common pathologies. Thanks to its simplicity and usage of Modelica language, it is suitable to be embedded within more elaborate systems. We achieved the simplification by a combination of behavioral Siggaard-Andersen's traditional approach for erythrocyte modeling and the mechanistic Stewart's physicochemical approach for plasma modeling. The resulting model is capable of providing variations in arterial pCO2, base excess, strong ion difference, hematocrit, plasma protein, phosphates and hemodilution/hemoconcentration, but insensitive to DPG and CO concentrations. CONCLUSIONS: This study presents a straightforward unification of Siggaard-Andersen's and Stewart's acid-base models. The resulting full-blood acid-base model is designed to be a core part of a complex dynamic whole-body acid-base and gas transfer model.
650    12
$a acidobazická rovnováha $x fyziologie $7 D000136
650    _2
$a poruchy acidobazické rovnováhy $x diagnóza $x epidemiologie $x patofyziologie $7 D000137
650    _2
$a lidé $7 D006801
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    12
$a biologické modely $7 D008954
650    12
$a chemické modely $7 D008956
650    12
$a teoretické modely $7 D008962
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kofránek, Jiří $u Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U nemocnice 5, 128 00, Prague 2, Czech Republic.
773    0_
$w MED00166008 $t Theoretical biology & medical modelling $x 1742-4682 $g Roč. 15, č. 1 (2018), s. 14
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30196793 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190121105859 $b ABA008
999    __
$a ok $b bmc $g 1364485 $s 1038512
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 15 $c 1 $d 14 $e 20180910 $i 1742-4682 $m Theoretical biology and medical modelling $n Theor Biol Med Model $x MED00166008
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...