Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection

A. Hejčl, J. Růžička, V. Proks, H. Macková, Š. Kubinová, D. Tukmachev, J. Cihlář, D. Horák, P. Jendelová,

. 2018 ; 29 (7) : 89. [pub] 20180625

Jazyk angličtina Země Spojené státy americké

Typ dokumentu hodnotící studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000621

While many types of biomaterials have been evaluated in experimental spinal cord injury (SCI) research, little is known about the time-related dynamics of the tissue infiltration of these scaffolds. We analyzed the ingrowth of connective tissue, axons and blood vessels inside the superporous poly (2-hydroxyethyl methacrylate) hydrogel with oriented pores. The hydrogels, either plain or seeded with mesenchymal stem cells (MSCs), were implanted in spinal cord transection at the level of Th8. The animals were sacrificed at days 2, 7, 14, 28, 49 and 6 months after SCI and histologically evaluated. We found that within the first week, the hydrogels were already infiltrated with connective tissue and blood vessels, which remained stable for the next 6 weeks. Axons slowly and gradually infiltrated the hydrogel within the first month, after which the numbers became stable. Six months after SCI we observed rare axons crossing the hydrogel bridge and infiltrating the caudal stump. There was no difference in the tissue infiltration between the plain hydrogels and those seeded with MSCs. We conclude that while connective tissue and blood vessels quickly infiltrate the scaffold within the first week, axons show a rather gradual infiltration over the first month, and this is not facilitated by the presence of MSCs inside the hydrogel pores. Further research which is focused on the permissive micro-environment of the hydrogel scaffold is needed, to promote continuous and long-lasting tissue regeneration across the spinal cord lesion.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000621
003      
CZ-PrNML
005      
20190122121029.0
007      
ta
008      
190107s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10856-018-6100-2 $2 doi
035    __
$a (PubMed)29938301
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hejčl, Aleš $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic. ales.hejcl@gmail.com. Department of Neurosurgery, J. E. Purkinje University, Masaryk Hospital, Sociální péče 12A, 401 13, Ústí nad Labem, Czech Republic. ales.hejcl@gmail.com.
245    10
$a Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection / $c A. Hejčl, J. Růžička, V. Proks, H. Macková, Š. Kubinová, D. Tukmachev, J. Cihlář, D. Horák, P. Jendelová,
520    9_
$a While many types of biomaterials have been evaluated in experimental spinal cord injury (SCI) research, little is known about the time-related dynamics of the tissue infiltration of these scaffolds. We analyzed the ingrowth of connective tissue, axons and blood vessels inside the superporous poly (2-hydroxyethyl methacrylate) hydrogel with oriented pores. The hydrogels, either plain or seeded with mesenchymal stem cells (MSCs), were implanted in spinal cord transection at the level of Th8. The animals were sacrificed at days 2, 7, 14, 28, 49 and 6 months after SCI and histologically evaluated. We found that within the first week, the hydrogels were already infiltrated with connective tissue and blood vessels, which remained stable for the next 6 weeks. Axons slowly and gradually infiltrated the hydrogel within the first month, after which the numbers became stable. Six months after SCI we observed rare axons crossing the hydrogel bridge and infiltrating the caudal stump. There was no difference in the tissue infiltration between the plain hydrogels and those seeded with MSCs. We conclude that while connective tissue and blood vessels quickly infiltrate the scaffold within the first week, axons show a rather gradual infiltration over the first month, and this is not facilitated by the presence of MSCs inside the hydrogel pores. Further research which is focused on the permissive micro-environment of the hydrogel scaffold is needed, to promote continuous and long-lasting tissue regeneration across the spinal cord lesion.
650    _2
$a zvířata $7 D000818
650    _2
$a axony $x patologie $7 D001369
650    _2
$a biokompatibilní materiály $x chemie $7 D001672
650    _2
$a hydrogely $7 D020100
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a testování materiálů $7 D008422
650    12
$a transplantace mezenchymálních kmenových buněk $7 D045164
650    _2
$a fyziologická neovaskularizace $7 D018919
650    _2
$a oligopeptidy $x chemie $7 D009842
650    _2
$a polyhydroxyethylmethakrylát $x chemie $7 D011102
650    _2
$a poréznost $7 D016062
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
650    _2
$a poranění míchy $x patologie $x patofyziologie $x terapie $7 D013119
650    _2
$a regenerace míchy $x fyziologie $7 D058630
650    _2
$a časové faktory $7 D013997
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
700    1_
$a Růžička, Jiří $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic. Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Úvalu 84, 150 06, Prague 5, Czech Republic.
700    1_
$a Proks, Vladimír $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám.2, 162 06, Praha 6, Břevnov, Czech Republic.
700    1_
$a Macková, Hana $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám.2, 162 06, Praha 6, Břevnov, Czech Republic.
700    1_
$a Kubinová, Šárka $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
700    1_
$a Tukmachev, Dmitry $u Department of Neurosurgery, Motol University Hospital, V Úvalu 84, Prague 5, 150 06, Czech Republic.
700    1_
$a Cihlář, Jiří $u Department of Mathematics, Faculty of Science, J. E. Purkyně University, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic.
700    1_
$a Horák, Daniel $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám.2, 162 06, Praha 6, Břevnov, Czech Republic.
700    1_
$a Jendelová, Pavla $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic. Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Úvalu 84, 150 06, Prague 5, Czech Republic.
773    0_
$w MED00002780 $t Journal of materials science. Materials in medicine $x 1573-4838 $g Roč. 29, č. 7 (2018), s. 89
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29938301 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190122121248 $b ABA008
999    __
$a ok $b bmc $g 1363881 $s 1038744
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 29 $c 7 $d 89 $e 20180625 $i 1573-4838 $m Journal of materials science. Materials in medicine $n J Mater Sci Mater Med $x MED00002780
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...