-
Something wrong with this record ?
Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules
A. Lüdecke, AM. Seidel, M. Braun, Z. Lansky, S. Diez,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't, Video-Audio Media
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- Spindle Apparatus metabolism MeSH
- Kinesins isolation & purification metabolism MeSH
- Microtubules metabolism MeSH
- Mitosis physiology MeSH
- Optical Tweezers MeSH
- Protein Domains MeSH
- Microtubule-Associated Proteins genetics isolation & purification metabolism MeSH
- Drosophila Proteins isolation & purification metabolism MeSH
- Recombinant Proteins genetics isolation & purification metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics isolation & purification metabolism MeSH
- Protein Binding physiology MeSH
- Green Fluorescent Proteins genetics isolation & purification metabolism MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact with one microtubule via their non-processive motor domains and with another via their diffusive tail domains, the latter allowing the protein to slip along the microtubule surface. Little is known about the influence of the tail domains on the protein's performance. Here, we show that diffusive anchorage of Ncd's tail domains impacts velocity and force considerably. Tail domain slippage reduced velocities from 270 nm s-1 to 60 nm s-1 and forces from several piconewtons to the sub-piconewton range. These findings challenge the notion that kinesin-14 may act as an antagonizer of other crosslinking motors, such as kinesin-5, during mitosis. It rather suggests a role of kinesin-14 as a flexible element, pliantly sliding and crosslinking microtubules to facilitate remodeling of the mitotic spindle.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000665
- 003
- CZ-PrNML
- 005
- 20190108130005.0
- 007
- ta
- 008
- 190107s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-018-04656-0 $2 doi
- 035 __
- $a (PubMed)29880831
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lüdecke, Annemarie $u B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany.
- 245 10
- $a Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules / $c A. Lüdecke, AM. Seidel, M. Braun, Z. Lansky, S. Diez,
- 520 9_
- $a Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact with one microtubule via their non-processive motor domains and with another via their diffusive tail domains, the latter allowing the protein to slip along the microtubule surface. Little is known about the influence of the tail domains on the protein's performance. Here, we show that diffusive anchorage of Ncd's tail domains impacts velocity and force considerably. Tail domain slippage reduced velocities from 270 nm s-1 to 60 nm s-1 and forces from several piconewtons to the sub-piconewton range. These findings challenge the notion that kinesin-14 may act as an antagonizer of other crosslinking motors, such as kinesin-5, during mitosis. It rather suggests a role of kinesin-14 as a flexible element, pliantly sliding and crosslinking microtubules to facilitate remodeling of the mitotic spindle.
- 650 _2
- $a proteiny Drosophily $x izolace a purifikace $x metabolismus $7 D029721
- 650 _2
- $a zelené fluorescenční proteiny $x genetika $x izolace a purifikace $x metabolismus $7 D049452
- 650 _2
- $a kineziny $x izolace a purifikace $x metabolismus $7 D016547
- 650 _2
- $a proteiny asociované s mikrotubuly $x genetika $x izolace a purifikace $x metabolismus $7 D008869
- 650 _2
- $a mikrotubuly $x metabolismus $7 D008870
- 650 _2
- $a mitóza $x fyziologie $7 D008938
- 650 _2
- $a optická pinzeta $7 D052898
- 650 _2
- $a vazba proteinů $x fyziologie $7 D011485
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a rekombinantní proteiny $x genetika $x izolace a purifikace $x metabolismus $7 D011994
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x izolace a purifikace $x metabolismus $7 D029701
- 650 _2
- $a aparát dělícího vřeténka $x metabolismus $7 D008941
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a audiovizuální média $7 D059040
- 700 1_
- $a Seidel, Anja-Maria $u B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany.
- 700 1_
- $a Braun, Marcus $u B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. marcus.braun@ibt.cas.cz. Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic. marcus.braun@ibt.cas.cz.
- 700 1_
- $a Lansky, Zdenek $u B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. zdenek.lansky@ibt.cas.cz. Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic. zdenek.lansky@ibt.cas.cz.
- 700 1_
- $a Diez, Stefan $u B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307, Dresden, Germany. stefan.diez@tu-dresden.de. Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany. stefan.diez@tu-dresden.de.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 9, č. 1 (2018), s. 2214
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29880831 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190108130206 $b ABA008
- 999 __
- $a ok $b bmc $g 1364701 $s 1038788
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 9 $c 1 $d 2214 $e 20180607 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20190107