Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine

. 2015 Apr 28 ; 16 (5) : 9520-39. [epub] 20150428

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25927576

A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

Zobrazit více v PubMed

Long J.R. Molecular cluster magnets. In: Yang P., editor. Chemistry of Nanostructured Materials. World Scientific Publishing; Hong Kong, China: 2003. pp. 291–315.

Che C.M., Huang J.S. Metal complexes of chiral binaphthyl Schiff-base ligands and their application in stereoselective organic transformations. Coord. Chem. Rev. 2003;242:97–113. doi: 10.1016/S0010-8545(03)00065-1. DOI

Drozdzak R., Allaert B., Ledoux N., Dragutan I., Dragutan V., Verpoort F. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coord. Chem. Rev. 2005;249:3055–3074. doi: 10.1016/j.ccr.2005.05.003. DOI

Gupta K.C., Sutar A.K., Lin C.C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev. 2009;253:1926–1946. doi: 10.1016/j.ccr.2009.03.019. DOI

Gupta K.C., Sutar A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 2008;252:1420–1450. doi: 10.1016/j.ccr.2007.09.005. DOI

Lacroix P.G. Second-order optical nonlinearities in coordination chemistry: The case of bis(salicylaldiminato)metal Schiff base complexes. Eur. J. Inorg. Chem. 2001:339–348. doi: 10.1002/1099-0682(200102)2001:2<339::AID-EJIC339>3.0.CO;2-Z. DOI

Atkins A.J., Black D., Blake A.J., MarinBecerra A., Parsons S., RuizRamirez L., Schroder M. Schiff-base compartmental macrocyclic complexes. Chem. Commun. 1996:457–464. doi: 10.1039/cc9960000457. DOI

Rezaeivala M., Keypour H. Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety–The first 50 years. Coord. Chem. Rev. 2014;280:203–253. doi: 10.1016/j.ccr.2014.06.007. DOI

Kumar S., Dhar D.N., Saxena P.N. Applications of metal complexes of Schiff bases-A review. J. Sci. Ind. Res. 2009;68:181–187.

Murtaza G., Mumtaz A., Khan F.A., Ahmad S., Azhar S., Najam-Ul-Haq M., Atif M., Khan S.A., Maalik A., Alam F., et al. Recent pharmacological advancements in schiff bases: A review. Acta Pol. Pharm. 2014;71:531–535. PubMed

Ajlouni A.M., Taha Z.A., Al-Hassan K.A., Anzeh A.M.A. Synthesis, characterization, luminescence properties and antioxidant activity of Ln(III) complexes with a new aryl amide bridging ligand. J. Lumin. 2012;132:1357–1363. doi: 10.1016/j.jlumin.2012.01.013. DOI

Zhang L., Ji Y., Xu X., Liu Z., Tang J. Synthesis, structure and luminescence properties of a series of dinuclear LnIII complexes (Ln = Gd, Tb, Dy, Ho, Er) J. Lumin. 2012;132:1906–1909. doi: 10.1016/j.jlumin.2012.03.040. DOI

Ceyhan G., Köse M., Tümer M., Demirtaş I., Yağlioğlu A.S., McKee V. Structural characterization of some Schiff base compounds: Investigation of their electrochemical, photoluminescence, thermal and anticancer activity properties. J. Lumin. 2013;143:623–634. doi: 10.1016/j.jlumin.2013.06.002. DOI

Woodruff D.N., Winpenny R.E.P., Layfield R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013;113:5110–5148. doi: 10.1021/cr400018q. PubMed DOI

Zhang P., Guo Y.N., Tabg J. Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord. Chem. Rev. 2013;257:1728–1763. doi: 10.1016/j.ccr.2013.01.012. DOI

Lu X., Lin Q., Liu W., Zhang P. Synthesis, characterization and antibacterial activity of rare earth complexes from Schiff base of N-salicylidenelysine acid. J. Zhejiang Norm. Univ. 2006;29:172–176.

Zhang W., Zhang J., Yuan Z. Synthesis and fluorescence performance of rare earth complexes with amino acid Schiff base. Huagong Jinzhan. 2011;30:1598–1601. (In Chinese)

Roy R., Saha M.C., Roy P.S. Transition Metal Chemistry. Volume 15. Springer; New York, NY, USA: 1990. Coordination chemistry of f-block elements with imine acids. Part IV. Synthetic and chiroptical studies on lanthanide(III) complexes of imine acids derived from l-alanine, l-valine, l-tyrosine and l-glutamic acid; pp. 51–57.

Hao Z., Song S., Su S., Song X., Zhu M., Zhao S., Meng X., Zhang H. Design and synthesis of enantiomerically pure chiral sandwichlike lamellar structure: New explorations from molecular building blocks to three-dimensional morphology. Cryst. Growth Des. 2013;13:976–980. doi: 10.1021/cg301321r. DOI

Gupta C.P., Dugar S., Mehta R.K. Physico-chemical and thermodynamic studies of La (III), Ce (III), Pr (III), Nd (III), Sm (III), Gd (III), Tb (III), Dy (III), Ho (III) and Yb (III)-chelates of N-salicylidenevaline. J. Ind. Chem. Soc. 1979;56:1180–1182.

Aly G.Y., Rabia M.K.M., Al-Mohanna M.A.F. La(III) and Ce(III) complexes of some tri- and tetradentate N-Naphthylideneamino acids. Synth. React. Inorg. Met.-Org. Chem. 2004;34:45–66. doi: 10.1081/SIM-120027316. DOI

Zhang X., Zhang Y., Lin Y. Synthesis and characterization of glycine Schiff base complexes of the light lanthanide elements. Synth. React. Inorg. Met.-Org. Chem. 2000;30:45–55. doi: 10.1080/00945710009351746. DOI

Thankarajan N., Moharan K. Lanthanide(III) complexes of N-salicylideneglycine and N-(2-hydroxy-1-naphthylidene)glycine. Proc. Indian Acad. Sci.-Chem. Sci. 1988;100:7–11.

Zhao Y., Chu H., Li X., Sun H. Schiff Base and Bipyridine-Containing Rare-Earth Metal Complexes, and the Preparation Method and Bacteriostatic Application Thereof. CN102584871. 2012 Jul 18;

Casanova D., Cirera J., Llunell M., Alemany P., Avnir D., Alvarez S. Minimal distortion pathways in polyhedral rearrangements. J. Am. Chem. Soc. 2004;126:1755–1763. doi: 10.1021/ja036479n. PubMed DOI

Allen F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Cryst. 2002:380–388. doi: 10.1107/S0108768102003890. PubMed DOI

Canaj A.B., Tsikalas G.K., Philippidis A., Spyros A., Milios C.J. Heptanuclear lanthanide [Ln7] clusters: From blue-emitting solution-stable complexes to hybrid clusters. Dalton Trans. 2014;43:12486–12494. doi: 10.1039/C4DT00701H. PubMed DOI

Vančo J., Marek J., Trávníšek Z., Račanská E., Muselík J., Švajlenová O. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine. J. Inorg. Biochem. 2008;102:696–705. doi: 10.1016/j.jinorgbio.2007.10.003. PubMed DOI

Mohanan K., Aswathy R., Nitha L.P., Mathews N.E., Kumari B.S. Synthesis, spectroscopic characterization, DNA cleavage and antibacterial studies of a novel tridentate Schiff base and some lanthanide(III) complexes. J. Rare Earths. 2014;32:379–388. doi: 10.1016/S1002-0721(14)60081-8. DOI

Bünzli J.C.G., Eliseeva S.V. Basics of lanthanide photophysics. In: Hänninen P., Härmä H., editors. Lanthanide Luminescence. Volume 7. Springer Berlin Heidelberg; Berlin, Germany: 2011. pp. 1–45.

Woodward A.W., Frazer A., Morales A.R., Yu J., Moore A.F., Campiglia A.D., Belfield K.D. Two-photon sensitized visible and near-IR luminescence of lanthanide complexes using a fluorene-based donor-π-acceptor diketonate. Dalton Trans. 2014;43:16626–16639. doi: 10.1039/C4DT01507J. PubMed DOI

Binnemans K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009;109:4283–4374. doi: 10.1021/cr8003983. PubMed DOI

Jimenez R., Fleming G.R., Kumar P.V., Maroncelli M. Femtosecond solvation dynamics of water. Nature. 1994;369:471–473. doi: 10.1038/369471a0. DOI

Layfield R., Murugesu M. Lanthanides and Actinides in Molecular Magnetism. 1st ed. John Wiley & Sons; Weinheim, Germany: 2015.

Boča R. A Handbook of Magnetochemical Formulae. Elsevier; Amsterdam, Holland: 2012. p. 1010.

MaTra2. Marek, J. and Trávníček, Z.; Brno/Olomouc, Czech Republic: 2005. version 1.01.

Kabsch W. XDS. Acta Cryst. 2010;D66:125–132. PubMed PMC

Sheldrick G.M. A short history of SHELX. Acta Cryst. 2008;A64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...