Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors

T. Lukeš, J. Pospíšil, K. Fliegel, T. Lasser, GM. Hagen,

. 2018 ; 7 (3) : 1-10.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000968

Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusions: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000968
003      
CZ-PrNML
005      
20190118124336.0
007      
ta
008      
190107s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1093/gigascience/giy002 $2 doi
035    __
$a (PubMed)29361123
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lukeš, Tomáš $u Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland.
245    10
$a Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors / $c T. Lukeš, J. Pospíšil, K. Fliegel, T. Lasser, GM. Hagen,
520    9_
$a Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusions: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
650    _2
$a algoritmy $7 D000465
650    _2
$a bakteriální proteiny $x chemie $7 D001426
650    _2
$a fluorescenční barviva $x chemie $7 D005456
650    _2
$a lidé $7 D006801
650    _2
$a luminescentní proteiny $x chemie $7 D008164
650    _2
$a receptory růstových faktorů $x chemie $x izolace a purifikace $7 D017978
650    _2
$a zobrazení jednotlivé molekuly $x metody $7 D000072760
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pospíšil, Jakub $u Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic.
700    1_
$a Fliegel, Karel $u Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic.
700    1_
$a Lasser, Theo $u Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland.
700    1_
$a Hagen, Guy M $u UCCS center for the Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado, 80918, USA.
773    0_
$w MED00186214 $t GigaScience $x 2047-217X $g Roč. 7, č. 3 (2018), s. 1-10
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29361123 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190118124550 $b ABA008
999    __
$a ok $b bmc $g 1363967 $s 1039091
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 7 $c 3 $d 1-10 $i 2047-217X $m GigaScience $n Gigascience $x MED00186214
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...