-
Something wrong with this record ?
Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm
D. Fernández, RJ. Sram, M. Dostal, A. Pastorkova, H. Gmuender, H. Choi,
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2004
PubMed Central
from 2005
Europe PubMed Central
from 2005
ProQuest Central
from 2009-01-01
Open Access Digital Library
from 2004-01-01
Open Access Digital Library
from 2005-01-01
Medline Complete (EBSCOhost)
from 2008-12-01
Health & Medicine (ProQuest)
from 2009-01-01
Public Health Database (ProQuest)
from 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2004
- MeSH
- Algorithms MeSH
- Benzo(a)pyrene toxicity MeSH
- Asthma chemically induced genetics MeSH
- Child MeSH
- Genetic Predisposition to Disease * MeSH
- Gene-Environment Interaction MeSH
- Polymorphism, Single Nucleotide MeSH
- Air Pollutants toxicity MeSH
- Humans MeSH
- Multifactorial Inheritance * MeSH
- Statistics as Topic MeSH
- Unsupervised Machine Learning MeSH
- Case-Control Studies MeSH
- Environmental Exposure adverse effects MeSH
- Air Pollution adverse effects MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Current studies of gene × air pollution interaction typically seek to identify unknown heritability of common complex illnesses arising from variability in the host's susceptibility to environmental pollutants of interest. Accordingly, a single component generalized linear models are often used to model the risk posed by an environmental exposure variable of interest in relation to a priori determined DNA variants. However, reducing the phenotypic heterogeneity may further optimize such approach, primarily represented by the modeled DNA variants. Here, we reduce phenotypic heterogeneity of asthma severity, and also identify single nucleotide polymorphisms (SNP) associated with phenotype subgroups. Specifically, we first apply an unsupervised learning algorithm method and a non-parametric regression to find a biclustering structure of children according to their allergy and asthma severity. We then identify a set of SNPs most closely correlated with each sub-group. We subsequently fit a logistic regression model for each group against the healthy controls using benzo[a]pyrene (B[a]P) as a representative airborne carcinogen. Application of such approach in a case-control data set shows that SNP clustering may help to partly explain heterogeneity in children's asthma susceptibility in relation to ambient B[a]P concentration with greater efficiency.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000993
- 003
- CZ-PrNML
- 005
- 20240620092555.0
- 007
- ta
- 008
- 190107s2018 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijerph15010106 $2 doi
- 035 __
- $a (PubMed)29320438
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Fernández, Daniel $u Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain. df.martinez@pssjd.org. School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand. df.martinez@pssjd.org.
- 245 10
- $a Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm / $c D. Fernández, RJ. Sram, M. Dostal, A. Pastorkova, H. Gmuender, H. Choi,
- 520 9_
- $a Current studies of gene × air pollution interaction typically seek to identify unknown heritability of common complex illnesses arising from variability in the host's susceptibility to environmental pollutants of interest. Accordingly, a single component generalized linear models are often used to model the risk posed by an environmental exposure variable of interest in relation to a priori determined DNA variants. However, reducing the phenotypic heterogeneity may further optimize such approach, primarily represented by the modeled DNA variants. Here, we reduce phenotypic heterogeneity of asthma severity, and also identify single nucleotide polymorphisms (SNP) associated with phenotype subgroups. Specifically, we first apply an unsupervised learning algorithm method and a non-parametric regression to find a biclustering structure of children according to their allergy and asthma severity. We then identify a set of SNPs most closely correlated with each sub-group. We subsequently fit a logistic regression model for each group against the healthy controls using benzo[a]pyrene (B[a]P) as a representative airborne carcinogen. Application of such approach in a case-control data set shows that SNP clustering may help to partly explain heterogeneity in children's asthma susceptibility in relation to ambient B[a]P concentration with greater efficiency.
- 650 _2
- $a látky znečišťující vzduch $x toxicita $7 D000393
- 650 _2
- $a znečištění ovzduší $x škodlivé účinky $7 D000397
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a bronchiální astma $x chemicky indukované $x genetika $7 D001249
- 650 _2
- $a benzopyren $x toxicita $7 D001564
- 650 _2
- $a studie případů a kontrol $7 D016022
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a vystavení vlivu životního prostředí $x škodlivé účinky $7 D004781
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a interakce genů a prostředí $7 D059647
- 650 12
- $a genetická predispozice k nemoci $7 D020022
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a multifaktoriální dědičnost $7 D020412
- 650 _2
- $a jednonukleotidový polymorfismus $7 D020641
- 650 _2
- $a statistika jako téma $7 D013223
- 650 _2
- $a strojové učení bez učitele $7 D000069558
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sram, Radim J $u Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic. sram@biomed.cas.cz.
- 700 1_
- $a Dostál, Miroslav, $d 1941- $u Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic. dostal.boleslav@gmail.com. $7 xx0075980
- 700 1_
- $a Pastorkova, Anna $u Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic. PastorkovaA@seznam.cz.
- 700 1_
- $a Gmuender, Hans $u Genedata AG, Margarethenstrasse 38, CH-4053 Basel, Switzerland. hans.gmuender@genedata.com.
- 700 1_
- $a Choi, Hyunok $u Departments of Environmental Health Sciences, Epidemiology, and Biostatistics State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA. hchoi@albany.edu.
- 773 0_
- $w MED00176090 $t International journal of environmental research and public health $x 1660-4601 $g Roč. 15, č. 1 (2018)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29320438 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20240620092556 $b ABA008
- 999 __
- $a ok $b bmc $g 1364946 $s 1039116
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 15 $c 1 $e 20180110 $i 1660-4601 $m International journal of environmental research and public health $n Int. j. environ. res. public health $x MED00176090
- LZP __
- $a Pubmed-20190107