• Something wrong with this record ?

Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm

D. Fernández, RJ. Sram, M. Dostal, A. Pastorkova, H. Gmuender, H. Choi,

. 2018 ; 15 (1) : . [pub] 20180110

Language English Country Switzerland

Document type Journal Article, Research Support, Non-U.S. Gov't

Current studies of gene × air pollution interaction typically seek to identify unknown heritability of common complex illnesses arising from variability in the host's susceptibility to environmental pollutants of interest. Accordingly, a single component generalized linear models are often used to model the risk posed by an environmental exposure variable of interest in relation to a priori determined DNA variants. However, reducing the phenotypic heterogeneity may further optimize such approach, primarily represented by the modeled DNA variants. Here, we reduce phenotypic heterogeneity of asthma severity, and also identify single nucleotide polymorphisms (SNP) associated with phenotype subgroups. Specifically, we first apply an unsupervised learning algorithm method and a non-parametric regression to find a biclustering structure of children according to their allergy and asthma severity. We then identify a set of SNPs most closely correlated with each sub-group. We subsequently fit a logistic regression model for each group against the healthy controls using benzo[a]pyrene (B[a]P) as a representative airborne carcinogen. Application of such approach in a case-control data set shows that SNP clustering may help to partly explain heterogeneity in children's asthma susceptibility in relation to ambient B[a]P concentration with greater efficiency.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000993
003      
CZ-PrNML
005      
20240620092555.0
007      
ta
008      
190107s2018 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijerph15010106 $2 doi
035    __
$a (PubMed)29320438
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Fernández, Daniel $u Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain. df.martinez@pssjd.org. School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand. df.martinez@pssjd.org.
245    10
$a Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[a]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm / $c D. Fernández, RJ. Sram, M. Dostal, A. Pastorkova, H. Gmuender, H. Choi,
520    9_
$a Current studies of gene × air pollution interaction typically seek to identify unknown heritability of common complex illnesses arising from variability in the host's susceptibility to environmental pollutants of interest. Accordingly, a single component generalized linear models are often used to model the risk posed by an environmental exposure variable of interest in relation to a priori determined DNA variants. However, reducing the phenotypic heterogeneity may further optimize such approach, primarily represented by the modeled DNA variants. Here, we reduce phenotypic heterogeneity of asthma severity, and also identify single nucleotide polymorphisms (SNP) associated with phenotype subgroups. Specifically, we first apply an unsupervised learning algorithm method and a non-parametric regression to find a biclustering structure of children according to their allergy and asthma severity. We then identify a set of SNPs most closely correlated with each sub-group. We subsequently fit a logistic regression model for each group against the healthy controls using benzo[a]pyrene (B[a]P) as a representative airborne carcinogen. Application of such approach in a case-control data set shows that SNP clustering may help to partly explain heterogeneity in children's asthma susceptibility in relation to ambient B[a]P concentration with greater efficiency.
650    _2
$a látky znečišťující vzduch $x toxicita $7 D000393
650    _2
$a znečištění ovzduší $x škodlivé účinky $7 D000397
650    _2
$a algoritmy $7 D000465
650    _2
$a bronchiální astma $x chemicky indukované $x genetika $7 D001249
650    _2
$a benzopyren $x toxicita $7 D001564
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a dítě $7 D002648
650    _2
$a vystavení vlivu životního prostředí $x škodlivé účinky $7 D004781
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a interakce genů a prostředí $7 D059647
650    12
$a genetická predispozice k nemoci $7 D020022
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    12
$a multifaktoriální dědičnost $7 D020412
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a statistika jako téma $7 D013223
650    _2
$a strojové učení bez učitele $7 D000069558
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sram, Radim J $u Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic. sram@biomed.cas.cz.
700    1_
$a Dostál, Miroslav, $d 1941- $u Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic. dostal.boleslav@gmail.com. $7 xx0075980
700    1_
$a Pastorkova, Anna $u Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic. PastorkovaA@seznam.cz.
700    1_
$a Gmuender, Hans $u Genedata AG, Margarethenstrasse 38, CH-4053 Basel, Switzerland. hans.gmuender@genedata.com.
700    1_
$a Choi, Hyunok $u Departments of Environmental Health Sciences, Epidemiology, and Biostatistics State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA. hchoi@albany.edu.
773    0_
$w MED00176090 $t International journal of environmental research and public health $x 1660-4601 $g Roč. 15, č. 1 (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29320438 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20240620092556 $b ABA008
999    __
$a ok $b bmc $g 1364946 $s 1039116
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 15 $c 1 $e 20180110 $i 1660-4601 $m International journal of environmental research and public health $n Int. j. environ. res. public health $x MED00176090
LZP    __
$a Pubmed-20190107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...