• Je něco špatně v tomto záznamu ?

COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS

Ž. Kneževic, I. Ambrozova, C. Domingo, M. De Saint-Hubert, M. Majer, I. Martínez-Rovira, S. Miljanic, N. Mojzeszek, P. Porwol, O. Ploc, M. Romero-Expósito, L. Stolarczyk, S. Trinkl, RM. Harrison, P. Olko,

. 2018 ; 180 (1-4) : 256-260.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19001078

Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001078
003      
CZ-PrNML
005      
20190108130159.0
007      
ta
008      
190107s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/rpd/ncx254 $2 doi
035    __
$a (PubMed)29165619
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kneževic, Ž $u Ruder Boškovic Institute, Bijenicka cesta 54, Zagreb, Croatia.
245    10
$a COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS / $c Ž. Kneževic, I. Ambrozova, C. Domingo, M. De Saint-Hubert, M. Majer, I. Martínez-Rovira, S. Miljanic, N. Mojzeszek, P. Porwol, O. Ploc, M. Romero-Expósito, L. Stolarczyk, S. Trinkl, RM. Harrison, P. Olko,
520    9_
$a Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique.
650    _2
$a algoritmy $7 D000465
650    _2
$a antropometrie $7 D000886
650    _2
$a dítě $7 D002648
650    _2
$a předškolní dítě $7 D002675
650    _2
$a design vybavení $7 D004867
650    _2
$a záření gama $x terapeutické užití $7 D005720
650    _2
$a lidé $7 D006801
650    _2
$a metoda Monte Carlo $7 D009010
650    _2
$a neutrony $7 D009502
650    12
$a fantomy radiodiagnostické $7 D019047
650    _2
$a protonová terapie $x přístrojové vybavení $7 D061766
650    12
$a protony $7 D011522
650    _2
$a dávka záření $7 D011829
650    _2
$a ionizující záření $7 D011839
650    _2
$a radiometrie $x přístrojové vybavení $7 D011874
650    _2
$a radioisotopová scintigrafie $7 D011877
650    _2
$a celková dávka radioterapie $7 D011879
650    _2
$a termoluminiscenční dozimetrie $x přístrojové vybavení $7 D013819
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
700    1_
$a Ambrozova, I $u Nuclear Physics Institute of the CAS, Department of Radiation Dosimetry, Na Truhlárce 39/64, Praha, Czech Republic.
700    1_
$a Domingo, C $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain.
700    1_
$a De Saint-Hubert, M $u Belgium Nuclear Research Center (SCK-CEN), Boeretang 200, Mol, Belgium.
700    1_
$a Majer, M $u Ruder Boškovic Institute, Bijenicka cesta 54, Zagreb, Croatia.
700    1_
$a Martínez-Rovira, I $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain.
700    1_
$a Miljanic, S $u Ruder Boškovic Institute, Bijenicka cesta 54, Zagreb, Croatia.
700    1_
$a Mojzeszek, N $u Cyclotron Centre Bronowice, Institute of Nuclear Physics, PAN (IFJPAN), Radzikowskiego 152, Krakow, Poland.
700    1_
$a Porwol, P $u Radiology therapeutic Center Poland SP. Z O.O., Centrum Radioterapii Amethyst w Krakowie, Zlotej Jesieni 1, Krakow, Poland.
700    1_
$a Ploc, O $u Nuclear Physics Institute of the CAS, Department of Radiation Dosimetry, Na Truhlárce 39/64, Praha, Czech Republic.
700    1_
$a Romero-Expósito, M $u Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain.
700    1_
$a Stolarczyk, L $u Cyclotron Centre Bronowice, Institute of Nuclear Physics, PAN (IFJPAN), Radzikowskiego 152, Krakow, Poland.
700    1_
$a Trinkl, S $u Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg, Germany. Technische Universität München, Physik-Department, James-Franck-Str. 1, Garching bei München, Germany.
700    1_
$a Harrison, R M $u University of Newcastle upon Tyne, Tyne and Wear, Newcastle upon Tyne, UK.
700    1_
$a Olko, P $u Cyclotron Centre Bronowice, Institute of Nuclear Physics, PAN (IFJPAN), Radzikowskiego 152, Krakow, Poland.
773    0_
$w MED00004029 $t Radiation protection dosimetry $x 1742-3406 $g Roč. 180, č. 1-4 (2018), s. 256-260
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29165619 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190108130400 $b ABA008
999    __
$a ok $b bmc $g 1365011 $s 1039201
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 180 $c 1-4 $d 256-260 $i 1742-3406 $m Radiation protection dosimetry $n Radiat Prot Dosimetry $x MED00004029
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...