-
Something wrong with this record ?
Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction
M. Stranava, P. Man, T. Skálová, P. Kolenko, J. Blaha, V. Fojtikova, V. Martínek, J. Dohnálek, A. Lengalova, M. Rosůlek, T. Shimizu, M. Martínková,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2008 to 1 year ago
Freely Accessible Science Journals
from 1905 to 1 year ago
PubMed Central
from 2005
Europe PubMed Central
from 2005 to 1 year ago
Open Access Digital Library
from 1905-10-01
Open Access Digital Library
from 1905-10-01
Elsevier Open Access Journals
from 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
from 1905
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Phosphorylation MeSH
- Heme chemistry MeSH
- Histidine Kinase chemistry metabolism MeSH
- Mass Spectrometry MeSH
- Crystallography, X-Ray MeSH
- Protein Structure, Quaternary MeSH
- Oxygen metabolism MeSH
- Models, Molecular MeSH
- Myxococcales metabolism MeSH
- Oxidation-Reduction MeSH
- Protein Domains MeSH
- Signal Transduction MeSH
- Deuterium Exchange Measurement MeSH
- Ferric Compounds chemistry MeSH
- Ferrous Compounds chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The heme-based oxygen sensor histidine kinase AfGcHK is part of a two-component signal transduction system in bacteria. O2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH- and -CN- complexes of AfGcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN- and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length AfGcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of AfGcHK. We conclude that AfGcHK functions as an ensemble of molecules sampling at least two conformational states.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19001118
- 003
- CZ-PrNML
- 005
- 20190121115555.0
- 007
- ta
- 008
- 190107s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1074/jbc.M117.817023 $2 doi
- 035 __
- $a (PubMed)29092908
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Stranava, Martin $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
- 245 10
- $a Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction / $c M. Stranava, P. Man, T. Skálová, P. Kolenko, J. Blaha, V. Fojtikova, V. Martínek, J. Dohnálek, A. Lengalova, M. Rosůlek, T. Shimizu, M. Martínková,
- 520 9_
- $a The heme-based oxygen sensor histidine kinase AfGcHK is part of a two-component signal transduction system in bacteria. O2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH- and -CN- complexes of AfGcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN- and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length AfGcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of AfGcHK. We conclude that AfGcHK functions as an ensemble of molecules sampling at least two conformational states.
- 650 _2
- $a bakteriální proteiny $x chemie $x metabolismus $7 D001426
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a vodík-deuteriová výměna $7 D041961
- 650 _2
- $a železité sloučeniny $x chemie $7 D005290
- 650 _2
- $a železnaté sloučeniny $x chemie $7 D005296
- 650 _2
- $a hem $x chemie $7 D006418
- 650 _2
- $a histidinkinasa $x chemie $x metabolismus $7 D000071677
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a Myxococcales $x metabolismus $7 D009231
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a kyslík $x metabolismus $7 D010100
- 650 _2
- $a fosforylace $7 D010766
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a kvarterní struktura proteinů $7 D020836
- 650 _2
- $a signální transdukce $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Man, Petr $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic. the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic.
- 700 1_
- $a Skálová, Tereza $u the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and.
- 700 1_
- $a Kolenko, Petr $u the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and. the Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1, Czech Republic.
- 700 1_
- $a Blaha, Jan $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
- 700 1_
- $a Fojtikova, Veronika $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
- 700 1_
- $a Martínek, Václav $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
- 700 1_
- $a Dohnálek, Jan $u the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and.
- 700 1_
- $a Lengalova, Alzbeta $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
- 700 1_
- $a Rosůlek, Michal $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic. the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic.
- 700 1_
- $a Shimizu, Toru $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
- 700 1_
- $a Martínková, Markéta $u From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic, marketa.martinkova@natur.cuni.cz.
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 292, č. 51 (2017), s. 20921-20935
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29092908 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190121115814 $b ABA008
- 999 __
- $a ok $b bmc $g 1364007 $s 1039241
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 292 $c 51 $d 20921-20935 $e 20171101 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- LZP __
- $a Pubmed-20190107