• Je něco špatně v tomto záznamu ?

Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere

X. Wu, H. Liu, X. Li, P. Ciais, F. Babst, W. Guo, C. Zhang, V. Magliulo, M. Pavelka, S. Liu, Y. Huang, P. Wang, C. Shi, Y. Ma,

. 2018 ; 24 (1) : 504-516. [pub] 20171023

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19001164

In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001164
003      
CZ-PrNML
005      
20190118123716.0
007      
ta
008      
190107s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/gcb.13920 $2 doi
035    __
$a (PubMed)28973825
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Wu, Xiuchen $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. Faculty of Geographical Science, Beijing Normal University, Beijing, China.
245    10
$a Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere / $c X. Wu, H. Liu, X. Li, P. Ciais, F. Babst, W. Guo, C. Zhang, V. Magliulo, M. Pavelka, S. Liu, Y. Huang, P. Wang, C. Shi, Y. Ma,
520    9_
$a In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate.
650    12
$a klimatické změny $7 D057231
650    12
$a období sucha $7 D055864
650    12
$a lesy $7 D065928
650    _2
$a hydrologie $7 D062070
650    _2
$a stromy $x růst a vývoj $7 D014197
650    _2
$a voda $x fyziologie $7 D014867
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Liu, Hongyan $u College of Urban and Environmental Science, Peking University, Beijing, China.
700    1_
$a Li, Xiaoyan $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. Faculty of Geographical Science, Beijing Normal University, Beijing, China.
700    1_
$a Ciais, Philippe $u CEA-CNRS-UVSQ, UMR8212-Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-Sur-Yvette, France.
700    1_
$a Babst, Flurin $u Dendro Sciences, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland.
700    1_
$a Guo, Weichao $u College of Urban and Environmental Science, Peking University, Beijing, China.
700    1_
$a Zhang, Cicheng $u Faculty of Geographical Science, Beijing Normal University, Beijing, China.
700    1_
$a Magliulo, Vincenzo $u National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems (CNR-ISAFoM), Ercolano, Italy.
700    1_
$a Pavelka, Marian $u CzechGlobe-Global Change Research Institute CAS, Brno, Czech Republic.
700    1_
$a Liu, Shaomin $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. Faculty of Geographical Science, Beijing Normal University, Beijing, China.
700    1_
$a Huang, Yongmei $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. Faculty of Geographical Science, Beijing Normal University, Beijing, China.
700    1_
$a Wang, Pei $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. Faculty of Geographical Science, Beijing Normal University, Beijing, China.
700    1_
$a Shi, Chunming $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China.
700    1_
$a Ma, Yujun $u State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China. Faculty of Geographical Science, Beijing Normal University, Beijing, China.
773    0_
$w MED00007661 $t Global change biology $x 1365-2486 $g Roč. 24, č. 1 (2018), s. 504-516
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28973825 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190118123930 $b ABA008
999    __
$a ok $b bmc $g 1365073 $s 1039287
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 24 $c 1 $d 504-516 $e 20171023 $i 1365-2486 $m Global change biology $n Glob Chang Biol $x MED00007661
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...