Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Mitochondrial Glycolysis in a Major Lineage of Eukaryotes

C. Río Bártulos, MB. Rogers, TA. Williams, E. Gentekaki, H. Brinkmann, R. Cerff, MF. Liaud, AB. Hehl, NR. Yarlett, A. Gruber, PG. Kroth, M. van der Giezen,

. 2018 ; 10 (9) : 2310-2325. [pub] 20180901

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012511

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012511
003      
CZ-PrNML
005      
20190411131809.0
007      
ta
008      
190405s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/gbe/evy164 $2 doi
035    __
$a (PubMed)30060189
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Río Bártulos, Carolina $u Institut für Genetik, Technische Universität Braunschweig. Fachbereich Biologie, Universität Konstanz, Germany.
245    10
$a Mitochondrial Glycolysis in a Major Lineage of Eukaryotes / $c C. Río Bártulos, MB. Rogers, TA. Williams, E. Gentekaki, H. Brinkmann, R. Cerff, MF. Liaud, AB. Hehl, NR. Yarlett, A. Gruber, PG. Kroth, M. van der Giezen,
520    9_
$a The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
650    _2
$a biologická evoluce $7 D005075
650    _2
$a Blastocystis $x cytologie $x enzymologie $x genetika $x metabolismus $7 D016844
650    _2
$a rozsivky $x cytologie $x enzymologie $x genetika $x metabolismus $7 D017377
650    _2
$a energetický metabolismus $7 D004734
650    _2
$a genom mitochondriální $7 D054629
650    12
$a glykolýza $7 D006019
650    _2
$a mitochondrie $x genetika $x metabolismus $7 D008928
650    _2
$a symbióza $7 D013559
650    _2
$a transformace genetická $7 D014170
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Rogers, Matthew B $u Biosciences, University of Exeter, United Kingdom. Rangos Research Center, University of Pittsburgh, Children's Hospital, Pittsburgh, PA.
700    1_
$a Williams, Tom A $u School of Biological Sciences, University of Bristol, United Kingdom.
700    1_
$a Gentekaki, Eleni $u Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada. School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai, Thailand.
700    1_
$a Brinkmann, Henner $u Département de Biochimie, Université de Montréal C.P. 6128, Montréal, Quebec, Canada. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.
700    1_
$a Cerff, Rüdiger $u Institut für Genetik, Technische Universität Braunschweig.
700    1_
$a Liaud, Marie-Françoise $u Institut für Genetik, Technische Universität Braunschweig.
700    1_
$a Hehl, Adrian B $u Institute of Parasitology, University of Zürich, Switzerland.
700    1_
$a Yarlett, Nigel R $u Department of Chemistry and Physical Sciences, Pace University.
700    1_
$a Gruber, Ansgar $u Fachbereich Biologie, Universität Konstanz, Germany. Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada. Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
700    1_
$a Kroth, Peter G $u Fachbereich Biologie, Universität Konstanz, Germany.
700    1_
$a van der Giezen, Mark $u Biosciences, University of Exeter, United Kingdom.
773    0_
$w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 10, č. 9 (2018), s. 2310-2325
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30060189 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190411131826 $b ABA008
999    __
$a ok $b bmc $g 1391821 $s 1050816
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 10 $c 9 $d 2310-2325 $e 20180901 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...