-
Je něco špatně v tomto záznamu ?
Mitochondrial Glycolysis in a Major Lineage of Eukaryotes
C. Río Bártulos, MB. Rogers, TA. Williams, E. Gentekaki, H. Brinkmann, R. Cerff, MF. Liaud, AB. Hehl, NR. Yarlett, A. Gruber, PG. Kroth, M. van der Giezen,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Oxford Journals Open Access Collection
od 2009
ROAD: Directory of Open Access Scholarly Resources
od 2009
PubMed
30060189
DOI
10.1093/gbe/evy164
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- Blastocystis cytologie enzymologie genetika metabolismus MeSH
- energetický metabolismus MeSH
- genom mitochondriální MeSH
- glykolýza * MeSH
- mitochondrie genetika metabolismus MeSH
- rozsivky cytologie enzymologie genetika metabolismus MeSH
- symbióza MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
Biosciences University of Exeter United Kingdom
Department of Chemistry and Physical Sciences Pace University
Fachbereich Biologie Universität Konstanz Germany
Institut für Genetik Technische Universität Braunschweig
Institute of Parasitology University of Zürich Switzerland
School of Biological Sciences University of Bristol United Kingdom
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012511
- 003
- CZ-PrNML
- 005
- 20190411131809.0
- 007
- ta
- 008
- 190405s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/gbe/evy164 $2 doi
- 035 __
- $a (PubMed)30060189
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Río Bártulos, Carolina $u Institut für Genetik, Technische Universität Braunschweig. Fachbereich Biologie, Universität Konstanz, Germany.
- 245 10
- $a Mitochondrial Glycolysis in a Major Lineage of Eukaryotes / $c C. Río Bártulos, MB. Rogers, TA. Williams, E. Gentekaki, H. Brinkmann, R. Cerff, MF. Liaud, AB. Hehl, NR. Yarlett, A. Gruber, PG. Kroth, M. van der Giezen,
- 520 9_
- $a The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
- 650 _2
- $a biologická evoluce $7 D005075
- 650 _2
- $a Blastocystis $x cytologie $x enzymologie $x genetika $x metabolismus $7 D016844
- 650 _2
- $a rozsivky $x cytologie $x enzymologie $x genetika $x metabolismus $7 D017377
- 650 _2
- $a energetický metabolismus $7 D004734
- 650 _2
- $a genom mitochondriální $7 D054629
- 650 12
- $a glykolýza $7 D006019
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $7 D008928
- 650 _2
- $a symbióza $7 D013559
- 650 _2
- $a transformace genetická $7 D014170
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Rogers, Matthew B $u Biosciences, University of Exeter, United Kingdom. Rangos Research Center, University of Pittsburgh, Children's Hospital, Pittsburgh, PA.
- 700 1_
- $a Williams, Tom A $u School of Biological Sciences, University of Bristol, United Kingdom.
- 700 1_
- $a Gentekaki, Eleni $u Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada. School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai, Thailand.
- 700 1_
- $a Brinkmann, Henner $u Département de Biochimie, Université de Montréal C.P. 6128, Montréal, Quebec, Canada. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.
- 700 1_
- $a Cerff, Rüdiger $u Institut für Genetik, Technische Universität Braunschweig.
- 700 1_
- $a Liaud, Marie-Françoise $u Institut für Genetik, Technische Universität Braunschweig.
- 700 1_
- $a Hehl, Adrian B $u Institute of Parasitology, University of Zürich, Switzerland.
- 700 1_
- $a Yarlett, Nigel R $u Department of Chemistry and Physical Sciences, Pace University.
- 700 1_
- $a Gruber, Ansgar $u Fachbereich Biologie, Universität Konstanz, Germany. Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada. Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- 700 1_
- $a Kroth, Peter G $u Fachbereich Biologie, Universität Konstanz, Germany.
- 700 1_
- $a van der Giezen, Mark $u Biosciences, University of Exeter, United Kingdom.
- 773 0_
- $w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 10, č. 9 (2018), s. 2310-2325
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30060189 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190411131826 $b ABA008
- 999 __
- $a ok $b bmc $g 1391821 $s 1050816
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 10 $c 9 $d 2310-2325 $e 20180901 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
- LZP __
- $a Pubmed-20190405