-
Je něco špatně v tomto záznamu ?
Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex
F. Partensky, D. Mella-Flores, C. Six, L. Garczarek, M. Czjzek, D. Marie, E. Kotabová, K. Felcmanová, O. Prášil,
Jazyk angličtina Země Nizozemsko
Typ dokumentu srovnávací studie, časopisecké články
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- bakteriální proteiny chemie genetika fyziologie MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza fyziologie MeSH
- fotosystém II (proteinový komplex) chemie genetika fyziologie MeSH
- genom bakteriální MeSH
- kyslík metabolismus MeSH
- molekulární modely MeSH
- průtoková cytometrie MeSH
- sinice genetika metabolismus MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012591
- 003
- CZ-PrNML
- 005
- 20190416121802.0
- 007
- ta
- 008
- 190405s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11120-018-0539-3 $2 doi
- 035 __
- $a (PubMed)29938315
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Partensky, Frédéric $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. frederic.partensky@sb-roscoff.fr. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France. frederic.partensky@sb-roscoff.fr.
- 245 10
- $a Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex / $c F. Partensky, D. Mella-Flores, C. Six, L. Garczarek, M. Czjzek, D. Marie, E. Kotabová, K. Felcmanová, O. Prášil,
- 520 9_
- $a The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
- 650 _2
- $a bakteriální proteiny $x chemie $x genetika $x fyziologie $7 D001426
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a sinice $x genetika $x metabolismus $7 D000458
- 650 _2
- $a průtoková cytometrie $7 D005434
- 650 _2
- $a genom bakteriální $7 D016680
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a kyslík $x metabolismus $7 D010100
- 650 _2
- $a fotosyntéza $x fyziologie $7 D010788
- 650 _2
- $a fotosystém II (proteinový komplex) $x chemie $x genetika $x fyziologie $7 D045332
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mella-Flores, Daniella $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. Center of Applied Ecology and Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
- 700 1_
- $a Six, Christophe $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
- 700 1_
- $a Garczarek, Laurence $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
- 700 1_
- $a Czjzek, Mirjam $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 8227, Marine Glycobiology Group, Station Biologique, CS 90074, 29680, Roscoff, France.
- 700 1_
- $a Marie, Dominique $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
- 700 1_
- $a Kotabová, Eva $u Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic.
- 700 1_
- $a Felcmanová, Kristina $u Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic. Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic.
- 700 1_
- $a Prášil, Ondřej $u Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic. Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic.
- 773 0_
- $w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 138, č. 1 (2018), s. 57-71
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29938315 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416121827 $b ABA008
- 999 __
- $a ok $b bmc $g 1391901 $s 1050896
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 138 $c 1 $d 57-71 $e 20180625 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
- LZP __
- $a Pubmed-20190405