• Je něco špatně v tomto záznamu ?

Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex

F. Partensky, D. Mella-Flores, C. Six, L. Garczarek, M. Czjzek, D. Marie, E. Kotabová, K. Felcmanová, O. Prášil,

. 2018 ; 138 (1) : 57-71. [pub] 20180625

Jazyk angličtina Země Nizozemsko

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012591
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012591
003      
CZ-PrNML
005      
20190416121802.0
007      
ta
008      
190405s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11120-018-0539-3 $2 doi
035    __
$a (PubMed)29938315
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Partensky, Frédéric $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. frederic.partensky@sb-roscoff.fr. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France. frederic.partensky@sb-roscoff.fr.
245    10
$a Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex / $c F. Partensky, D. Mella-Flores, C. Six, L. Garczarek, M. Czjzek, D. Marie, E. Kotabová, K. Felcmanová, O. Prášil,
520    9_
$a The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
650    _2
$a bakteriální proteiny $x chemie $x genetika $x fyziologie $7 D001426
650    _2
$a chlorofyl $x metabolismus $7 D002734
650    _2
$a sinice $x genetika $x metabolismus $7 D000458
650    _2
$a průtoková cytometrie $7 D005434
650    _2
$a genom bakteriální $7 D016680
650    _2
$a světlo $7 D008027
650    _2
$a molekulární modely $7 D008958
650    _2
$a kyslík $x metabolismus $7 D010100
650    _2
$a fotosyntéza $x fyziologie $7 D010788
650    _2
$a fotosystém II (proteinový komplex) $x chemie $x genetika $x fyziologie $7 D045332
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mella-Flores, Daniella $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. Center of Applied Ecology and Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
700    1_
$a Six, Christophe $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
700    1_
$a Garczarek, Laurence $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
700    1_
$a Czjzek, Mirjam $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 8227, Marine Glycobiology Group, Station Biologique, CS 90074, 29680, Roscoff, France.
700    1_
$a Marie, Dominique $u Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France. CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
700    1_
$a Kotabová, Eva $u Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic.
700    1_
$a Felcmanová, Kristina $u Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic. Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic.
700    1_
$a Prášil, Ondřej $u Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic. Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic.
773    0_
$w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 138, č. 1 (2018), s. 57-71
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29938315 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190416121827 $b ABA008
999    __
$a ok $b bmc $g 1391901 $s 1050896
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 138 $c 1 $d 57-71 $e 20180625 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...