• Je něco špatně v tomto záznamu ?

Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic

IS. Pessi, E. Pushkareva, Y. Lara, F. Borderie, A. Wilmotte, J. Elster,

. 2019 ; 77 (1) : 136-147. [pub] 20180523

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012651
E-zdroje Online Plný text

NLK ProQuest Central od 2000-11-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2000-11-01 do Před 1 rokem
Springer Nature OA/Free Journals od 1974-12-01

Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012651
003      
CZ-PrNML
005      
20190418084204.0
007      
ta
008      
190405s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00248-018-1203-3 $2 doi
035    __
$a (PubMed)29796758
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pessi, Igor S $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium. igor.pessi@gmail.com. Department of Microbiology, University of Helsinki, P.O. Box 56 (Viikinkaari 9), 00014, Helsinki, Finland. igor.pessi@gmail.com.
245    10
$a Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic / $c IS. Pessi, E. Pushkareva, Y. Lara, F. Borderie, A. Wilmotte, J. Elster,
520    9_
$a Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
650    _2
$a biodiverzita $7 D044822
650    _2
$a sinice $x klasifikace $x genetika $7 D000458
650    _2
$a DNA bakterií $7 D004269
650    _2
$a genotyp $7 D005838
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a ledový příkrov $x mikrobiologie $7 D046448
650    12
$a fylogeneze $7 D010802
650    _2
$a RNA ribozomální 16S $x genetika $7 D012336
650    _2
$a půda $x chemie $7 D012987
650    12
$a půdní mikrobiologie $7 D012988
651    _2
$a Arktida $7 D001110
651    _2
$a Svalbard $7 D013538
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pushkareva, Ekaterina $u Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic.
700    1_
$a Lara, Yannick $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium. UR Geology - Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Allée du Six Août14, B18, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium.
700    1_
$a Borderie, Fabien $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium. Laboratoire Chrono-environnement, UMR 6249 CNRS Université Bourgogne Franche-Comté UsC INRA, Campus La Bouloie, Route de Gray 16, 25030, Besançon, France.
700    1_
$a Wilmotte, Annick $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium.
700    1_
$a Elster, Josef $u Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic. Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982, Třeboň, Czech Republic.
773    0_
$w MED00003334 $t Microbial ecology $x 1432-184X $g Roč. 77, č. 1 (2019), s. 136-147
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29796758 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190418084231 $b ABA008
999    __
$a ok $b bmc $g 1391961 $s 1050956
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 77 $c 1 $d 136-147 $e 20180523 $i 1432-184X $m Microbial ecology $n Microb Ecol $x MED00003334
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...