-
Je něco špatně v tomto záznamu ?
Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic
IS. Pessi, E. Pushkareva, Y. Lara, F. Borderie, A. Wilmotte, J. Elster,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 2000-11-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2000-11-01 do Před 1 rokem
Springer Nature OA/Free Journals
od 1974-12-01
- MeSH
- biodiverzita MeSH
- DNA bakterií MeSH
- fylogeneze * MeSH
- genotyp MeSH
- ledový příkrov mikrobiologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- sinice klasifikace genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Svalbard MeSH
Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012651
- 003
- CZ-PrNML
- 005
- 20190418084204.0
- 007
- ta
- 008
- 190405s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00248-018-1203-3 $2 doi
- 035 __
- $a (PubMed)29796758
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Pessi, Igor S $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium. igor.pessi@gmail.com. Department of Microbiology, University of Helsinki, P.O. Box 56 (Viikinkaari 9), 00014, Helsinki, Finland. igor.pessi@gmail.com.
- 245 10
- $a Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic / $c IS. Pessi, E. Pushkareva, Y. Lara, F. Borderie, A. Wilmotte, J. Elster,
- 520 9_
- $a Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
- 650 _2
- $a biodiverzita $7 D044822
- 650 _2
- $a sinice $x klasifikace $x genetika $7 D000458
- 650 _2
- $a DNA bakterií $7 D004269
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a ledový příkrov $x mikrobiologie $7 D046448
- 650 12
- $a fylogeneze $7 D010802
- 650 _2
- $a RNA ribozomální 16S $x genetika $7 D012336
- 650 _2
- $a půda $x chemie $7 D012987
- 650 12
- $a půdní mikrobiologie $7 D012988
- 651 _2
- $a Arktida $7 D001110
- 651 _2
- $a Svalbard $7 D013538
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pushkareva, Ekaterina $u Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic.
- 700 1_
- $a Lara, Yannick $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium. UR Geology - Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Allée du Six Août14, B18, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium.
- 700 1_
- $a Borderie, Fabien $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium. Laboratoire Chrono-environnement, UMR 6249 CNRS Université Bourgogne Franche-Comté UsC INRA, Campus La Bouloie, Route de Gray 16, 25030, Besançon, France.
- 700 1_
- $a Wilmotte, Annick $u InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium.
- 700 1_
- $a Elster, Josef $u Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic. Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982, Třeboň, Czech Republic.
- 773 0_
- $w MED00003334 $t Microbial ecology $x 1432-184X $g Roč. 77, č. 1 (2019), s. 136-147
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29796758 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190418084231 $b ABA008
- 999 __
- $a ok $b bmc $g 1391961 $s 1050956
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 77 $c 1 $d 136-147 $e 20180523 $i 1432-184X $m Microbial ecology $n Microb Ecol $x MED00003334
- LZP __
- $a Pubmed-20190405