-
Je něco špatně v tomto záznamu ?
Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters
C. Stork, J. Wagner, NO. Friedrich, C. de Bruyn Kops, M. Šícho, J. Kirchmair,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29285887
DOI
10.1002/cmdc.201700673
Knihovny.cz E-zdroje
- MeSH
- databáze faktografické MeSH
- falešně pozitivní reakce MeSH
- knihovny malých molekul chemie farmakologie MeSH
- počítačová simulace MeSH
- rychlé screeningové testy metody MeSH
- strojové učení * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
False-positive assay readouts caused by badly behaving compounds-frequent hitters, pan-assay interference compounds (PAINS), aggregators, and others-continue to pose a major challenge to experimental screening. There are only a few in silico methods that allow the prediction of such problematic compounds. We report the development of Hit Dexter, two extremely randomized trees classifiers for the prediction of compounds likely to trigger positive assay readouts either by true promiscuity or by assay interference. The models were trained on a well-prepared dataset extracted from the PubChem Bioassay database, consisting of approximately 311 000 compounds tested for activity on at least 50 proteins. Hit Dexter reached MCC and AUC values of up to 0.67 and 0.96 on an independent test set, respectively. The models are expected to be of high value, in particular to medicinal chemists and biochemists who can use Hit Dexter to identify compounds for which extra caution should be exercised with positive assay readouts. Hit Dexter is available as a free web service at http://hitdexter.zbh. uni-hamburg.de.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012959
- 003
- CZ-PrNML
- 005
- 20190412092316.0
- 007
- ta
- 008
- 190405s2018 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/cmdc.201700673 $2 doi
- 035 __
- $a (PubMed)29285887
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Stork, Conrad $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
- 245 10
- $a Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters / $c C. Stork, J. Wagner, NO. Friedrich, C. de Bruyn Kops, M. Šícho, J. Kirchmair,
- 520 9_
- $a False-positive assay readouts caused by badly behaving compounds-frequent hitters, pan-assay interference compounds (PAINS), aggregators, and others-continue to pose a major challenge to experimental screening. There are only a few in silico methods that allow the prediction of such problematic compounds. We report the development of Hit Dexter, two extremely randomized trees classifiers for the prediction of compounds likely to trigger positive assay readouts either by true promiscuity or by assay interference. The models were trained on a well-prepared dataset extracted from the PubChem Bioassay database, consisting of approximately 311 000 compounds tested for activity on at least 50 proteins. Hit Dexter reached MCC and AUC values of up to 0.67 and 0.96 on an independent test set, respectively. The models are expected to be of high value, in particular to medicinal chemists and biochemists who can use Hit Dexter to identify compounds for which extra caution should be exercised with positive assay readouts. Hit Dexter is available as a free web service at http://hitdexter.zbh. uni-hamburg.de.
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a falešně pozitivní reakce $7 D005189
- 650 _2
- $a rychlé screeningové testy $x metody $7 D057166
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a knihovny malých molekul $x chemie $x farmakologie $7 D054852
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wagner, Johannes $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
- 700 1_
- $a Friedrich, Nils-Ole $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
- 700 1_
- $a de Bruyn Kops, Christina $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
- 700 1_
- $a Šícho, Martin $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany. National Infrastructure for Chemical Biology, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28, Prague 6, Czech Republic.
- 700 1_
- $a Kirchmair, Johannes $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
- 773 0_
- $w MED00173270 $t ChemMedChem $x 1860-7187 $g Roč. 13, č. 6 (2018), s. 564-571
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29285887 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190412092334 $b ABA008
- 999 __
- $a ok $b bmc $g 1392269 $s 1051264
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 13 $c 6 $d 564-571 $e 20180201 $i 1860-7187 $m ChemMedChem $n ChemMedChem $x MED00173270
- LZP __
- $a Pubmed-20190405