Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters

C. Stork, J. Wagner, NO. Friedrich, C. de Bruyn Kops, M. Šícho, J. Kirchmair,

. 2018 ; 13 (6) : 564-571. [pub] 20180201

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012959

False-positive assay readouts caused by badly behaving compounds-frequent hitters, pan-assay interference compounds (PAINS), aggregators, and others-continue to pose a major challenge to experimental screening. There are only a few in silico methods that allow the prediction of such problematic compounds. We report the development of Hit Dexter, two extremely randomized trees classifiers for the prediction of compounds likely to trigger positive assay readouts either by true promiscuity or by assay interference. The models were trained on a well-prepared dataset extracted from the PubChem Bioassay database, consisting of approximately 311 000 compounds tested for activity on at least 50 proteins. Hit Dexter reached MCC and AUC values of up to 0.67 and 0.96 on an independent test set, respectively. The models are expected to be of high value, in particular to medicinal chemists and biochemists who can use Hit Dexter to identify compounds for which extra caution should be exercised with positive assay readouts. Hit Dexter is available as a free web service at http://hitdexter.zbh. uni-hamburg.de.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012959
003      
CZ-PrNML
005      
20190412092316.0
007      
ta
008      
190405s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/cmdc.201700673 $2 doi
035    __
$a (PubMed)29285887
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Stork, Conrad $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
245    10
$a Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters / $c C. Stork, J. Wagner, NO. Friedrich, C. de Bruyn Kops, M. Šícho, J. Kirchmair,
520    9_
$a False-positive assay readouts caused by badly behaving compounds-frequent hitters, pan-assay interference compounds (PAINS), aggregators, and others-continue to pose a major challenge to experimental screening. There are only a few in silico methods that allow the prediction of such problematic compounds. We report the development of Hit Dexter, two extremely randomized trees classifiers for the prediction of compounds likely to trigger positive assay readouts either by true promiscuity or by assay interference. The models were trained on a well-prepared dataset extracted from the PubChem Bioassay database, consisting of approximately 311 000 compounds tested for activity on at least 50 proteins. Hit Dexter reached MCC and AUC values of up to 0.67 and 0.96 on an independent test set, respectively. The models are expected to be of high value, in particular to medicinal chemists and biochemists who can use Hit Dexter to identify compounds for which extra caution should be exercised with positive assay readouts. Hit Dexter is available as a free web service at http://hitdexter.zbh. uni-hamburg.de.
650    _2
$a počítačová simulace $7 D003198
650    _2
$a databáze faktografické $7 D016208
650    _2
$a falešně pozitivní reakce $7 D005189
650    _2
$a rychlé screeningové testy $x metody $7 D057166
650    12
$a strojové učení $7 D000069550
650    _2
$a knihovny malých molekul $x chemie $x farmakologie $7 D054852
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Wagner, Johannes $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
700    1_
$a Friedrich, Nils-Ole $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
700    1_
$a de Bruyn Kops, Christina $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
700    1_
$a Šícho, Martin $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany. National Infrastructure for Chemical Biology, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28, Prague 6, Czech Republic.
700    1_
$a Kirchmair, Johannes $u Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146, Hamburg, Germany.
773    0_
$w MED00173270 $t ChemMedChem $x 1860-7187 $g Roč. 13, č. 6 (2018), s. 564-571
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29285887 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190412092334 $b ABA008
999    __
$a ok $b bmc $g 1392269 $s 1051264
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 13 $c 6 $d 564-571 $e 20180201 $i 1860-7187 $m ChemMedChem $n ChemMedChem $x MED00173270
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...