-
Je něco špatně v tomto záznamu ?
Cytocompatibility assessment of Ti-Zr-Pd-Si-(Nb) alloys with low Young's modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications
A. Blanquer, J. Musilkova, L. Barrios, E. Ibáñez, M. Vandrovcova, E. Pellicer, J. Sort, L. Bacakova, C. Nogués,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28390183
DOI
10.1002/jbm.b.33892
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- lidé MeSH
- modul pružnosti * MeSH
- niob chemie farmakologie MeSH
- osteoblasty cytologie metabolismus MeSH
- osteogeneze účinky léků MeSH
- palladium chemie farmakologie MeSH
- silikony chemie farmakologie MeSH
- slitiny * chemie farmakologie MeSH
- testování materiálů * MeSH
- titan chemie farmakologie MeSH
- zirkonium chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ti-based alloys have increased importance for biomedical applications due to their excellent properties. In particular, the two recently developed TiZrPdSi(Nb) alloys, with a predominant β-Ti phase microstructure, have good mechanical properties, such as a relatively low Young's modulus and high hardness. In the present work, the cytocompatibility of these alloys was assessed using human osteoblast-like Saos-2 cells. Cells grown on the alloys showed larger spreading areas (more than twice) and higher vinculin content (nearly 40% increment) when compared with cells grown on glass control surfaces, indicating a better cell adhesion. Moreover, cell proliferation was 18% higher for cells growing on both alloys than for cells growing on glass and polystyrene control surfaces. Osteogenic differentiation was evaluated by quantifying the expression of four osteogenic genes (osteonectin, osteocalcin, osteopontin, and bone sialoprotein), the presence of three osteogenic proteins (alkaline phosphatase, collagen I, and osteocalcin) and the activity of alkaline phosphatase at different time-points. The results demonstrated that TiZrPdSi and TiZrPdSiNb alloys enhance osteoblast differentiation, and that cells grown on TiZrPdSiNb alloy present higher levels of some late osteogenic markers during the first week in culture. These results suggest that the TiZrPdSi(Nb) alloys can be considered as excellent candidates for orthopaedical uses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 834-842, 2018.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013168
- 003
- CZ-PrNML
- 005
- 20190412112442.0
- 007
- ta
- 008
- 190405s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/jbm.b.33892 $2 doi
- 035 __
- $a (PubMed)28390183
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Blanquer, Andreu $u Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- 245 10
- $a Cytocompatibility assessment of Ti-Zr-Pd-Si-(Nb) alloys with low Young's modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications / $c A. Blanquer, J. Musilkova, L. Barrios, E. Ibáñez, M. Vandrovcova, E. Pellicer, J. Sort, L. Bacakova, C. Nogués,
- 520 9_
- $a Ti-based alloys have increased importance for biomedical applications due to their excellent properties. In particular, the two recently developed TiZrPdSi(Nb) alloys, with a predominant β-Ti phase microstructure, have good mechanical properties, such as a relatively low Young's modulus and high hardness. In the present work, the cytocompatibility of these alloys was assessed using human osteoblast-like Saos-2 cells. Cells grown on the alloys showed larger spreading areas (more than twice) and higher vinculin content (nearly 40% increment) when compared with cells grown on glass control surfaces, indicating a better cell adhesion. Moreover, cell proliferation was 18% higher for cells growing on both alloys than for cells growing on glass and polystyrene control surfaces. Osteogenic differentiation was evaluated by quantifying the expression of four osteogenic genes (osteonectin, osteocalcin, osteopontin, and bone sialoprotein), the presence of three osteogenic proteins (alkaline phosphatase, collagen I, and osteocalcin) and the activity of alkaline phosphatase at different time-points. The results demonstrated that TiZrPdSi and TiZrPdSiNb alloys enhance osteoblast differentiation, and that cells grown on TiZrPdSiNb alloy present higher levels of some late osteogenic markers during the first week in culture. These results suggest that the TiZrPdSi(Nb) alloys can be considered as excellent candidates for orthopaedical uses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 834-842, 2018.
- 650 12
- $a slitiny $x chemie $x farmakologie $7 D000497
- 650 _2
- $a buněčná diferenciace $x účinky léků $7 D002454
- 650 _2
- $a buněčné linie $7 D002460
- 650 12
- $a modul pružnosti $7 D055119
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a testování materiálů $7 D008422
- 650 _2
- $a niob $x chemie $x farmakologie $7 D009556
- 650 _2
- $a osteoblasty $x cytologie $x metabolismus $7 D010006
- 650 _2
- $a osteogeneze $x účinky léků $7 D010012
- 650 _2
- $a palladium $x chemie $x farmakologie $7 D010165
- 650 _2
- $a silikony $x chemie $x farmakologie $7 D012828
- 650 _2
- $a titan $x chemie $x farmakologie $7 D014025
- 650 _2
- $a zirkonium $x chemie $x farmakologie $7 D015040
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Musilkova, Jana $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
- 700 1_
- $a Barrios, Leonardo $u Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- 700 1_
- $a Ibáñez, Elena $u Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- 700 1_
- $a Vandrovcova, Marta $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
- 700 1_
- $a Pellicer, Eva $u Departament de Física, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- 700 1_
- $a Sort, Jordi $u Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- 700 1_
- $a Bacakova, Lucie $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
- 700 1_
- $a Nogués, Carme $u Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- 773 0_
- $w MED00007497 $t Journal of biomedical materials research. Part B, Applied biomaterials $x 1552-4981 $g Roč. 106, č. 2 (2018), s. 834-842
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28390183 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190412112501 $b ABA008
- 999 __
- $a ok $b bmc $g 1392478 $s 1051473
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 106 $c 2 $d 834-842 $e 20170408 $i 1552-4981 $m Journal of biomedical materials research. Part B, Applied biomaterials $n J Biomed Mater Res $x MED00007497
- LZP __
- $a Pubmed-20190405