Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Volatile organic compounds of biofluids for detecting lung cancer by an electronic nose based on artificial neural network

Ehab I. Mohamed, Marwa A. Mohamed, Samir M. Abdel-Mageed, Taher S. Abdel-Mohdy, Mohamed I. Badawi, Samy H. Darwish

. 2019 ; 17 (1) : 61-67.

Language English Country Czech Republic

Lung cancer (LC) incidence represents 11.5% of all new cancers, resulting in 1.72 million deaths worldwide in 2015. With the aim to investigate the capability of the electronic nose (e-nose) technology for detecting and differentiating complex mixtures of volatile organic compounds in biofluids ex-vivo, we enrolled 50 patients with suspected LC and 50 matching controls. Tissue biopsy was taken from suspicious lung mass for histopathological evaluation and blood, exhaled breath, and urine samples were collected from all participants and qualitatively processed using e-nose. Odor-print patterns were further analysed using the principal component analysis (PCA) and artificial neural network (ANN) analysis. Adenocarcinoma, non-small cell LC and squamous cell carcinoma were the predominant pathological types among LC patients. PCA cluster-plots showed a clear distinction between LC patients and controls for all biological samples; where the overall success ratios of classification for principal components #1 and #2 were: 95.46, 82.01, and 91.66% for blood, breath and urine samples, respectively. Moreover, ANN showed a better discrimination between LC patients and controls with success ratios of 95.74, 91.67 and 100% for blood, breath and urine samples, respectively. The e-nose is an easy noninvasive tool, capable of identifying LC patients from controls with great precision.

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc19019278
003      
CZ-PrNML
005      
20200113105248.0
007      
ta
008      
190601s2019 xr d f 000 0|eng||
009      
AR
024    7_
$a 10.32725/jab.2018.006 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Mohamed, Ehab I. $u Alexandria University, Medical Research Institute, Department of Medical Biophysics, Alexandria, Egypt
245    10
$a Volatile organic compounds of biofluids for detecting lung cancer by an electronic nose based on artificial neural network / $c Ehab I. Mohamed, Marwa A. Mohamed, Samir M. Abdel-Mageed, Taher S. Abdel-Mohdy, Mohamed I. Badawi, Samy H. Darwish
504    __
$a Literatura
520    9_
$a Lung cancer (LC) incidence represents 11.5% of all new cancers, resulting in 1.72 million deaths worldwide in 2015. With the aim to investigate the capability of the electronic nose (e-nose) technology for detecting and differentiating complex mixtures of volatile organic compounds in biofluids ex-vivo, we enrolled 50 patients with suspected LC and 50 matching controls. Tissue biopsy was taken from suspicious lung mass for histopathological evaluation and blood, exhaled breath, and urine samples were collected from all participants and qualitatively processed using e-nose. Odor-print patterns were further analysed using the principal component analysis (PCA) and artificial neural network (ANN) analysis. Adenocarcinoma, non-small cell LC and squamous cell carcinoma were the predominant pathological types among LC patients. PCA cluster-plots showed a clear distinction between LC patients and controls for all biological samples; where the overall success ratios of classification for principal components #1 and #2 were: 95.46, 82.01, and 91.66% for blood, breath and urine samples, respectively. Moreover, ANN showed a better discrimination between LC patients and controls with success ratios of 95.74, 91.67 and 100% for blood, breath and urine samples, respectively. The e-nose is an easy noninvasive tool, capable of identifying LC patients from controls with great precision.
650    12
$a nádory plic $x diagnostické zobrazování $x diagnóza $x krev $x moč $7 D008175
650    _2
$a elektronický nos $7 D062609
650    _2
$a těkavé organické sloučeniny $x analýza $7 D055549
650    _2
$a dechové testy $x metody $x přístrojové vybavení $7 D001944
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a prospektivní studie $7 D011446
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a lidé středního věku $7 D008875
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé $7 D006801
650    _2
$a ženské pohlaví $7 D005260
700    1_
$a Mohamed, Marwa A. $u Alexandria University, Medical Research Institute, Department of Chemical Pathology, Alexandria, Egypt
700    1_
$a Abdel-Mageed, Samir M. $u Alexandria University, Faculty of Science, Physics Department, Alexandria, Egypt
700    1_
$a Abdel-Mohdy, Taher S. $u October 6 University, Faculty of Applied Medical Sciences, Department of Biomedical Equipment, Cairo, Egypt
700    1_
$a Badawi, Mohamed I. $u Pharos University, Faculty of Allied Medical Sciences, Department of Medical Equipment, Alexandria, E
700    1_
$a Darwish, Samy H. $u Pharos University, Faculty of Engineering, Department of Electrical Engineering, Alexandria
773    0_
$t Journal of applied biomedicine $x 1214-021X $g Roč. 17, č. 1 (2019), s. 61-67 $w MED00012667
856    41
$u https://jab.zsf.jcu.cz/pdfs/jab/2019/01/09.pdf $y plný text volně přístupný
910    __
$a ABA008 $b B 2301 $c 1249 $y p $z 0
990    __
$a 20190601070112 $b ABA008
991    __
$a 20200113105614 $b ABA008
999    __
$a ok $b bmc $g 1410860 $s 1059157
BAS    __
$a 3
BMC    __
$a 2019 $b 17 $c 1 $d 61-67 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
LZP    __
$c NLK125 $d 20200113 $a NLK 2019-30/vt

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...