-
Je něco špatně v tomto záznamu ?
Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement
A. Volejníková, P. Melicherčík, O. Nešuta, E. Vaňková, L. Bednárová, J. Rybáček, V. Čeřovský,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
NV16-27726A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
NLK
Free Medical Journals
od 1968 do Před 1 rokem
PubMed
31107198
DOI
10.1099/jmm.0.001000
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky farmakologie MeSH
- bakteriální adheze účinky léků MeSH
- biofilmy účinky léků růst a vývoj MeSH
- kostní cementy MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků růst a vývoj MeSH
- mikrobiální testy citlivosti MeSH
- peptidy chemická syntéza farmakologie MeSH
- polymethylmethakrylát MeSH
- protézy a implantáty mikrobiologie MeSH
- Pseudomonas aeruginosa účinky léků růst a vývoj MeSH
- Staphylococcus epidermidis účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Antibiotic-loaded polymethylmethacrylate-based bone cement has been implemented in orthopaedics to cope with implant-related infections associated with the formation of bacterial biofilms. In the context of emerging bacterial resistance to current antibiotics, we examined the efficacy of short antimicrobial peptide-loaded bone cement in inhibiting bacterial adhesion and consequent biofilm formation on its surface. METHODOLOGY: The ability of α-helical antimicrobial peptides composed of 12 amino acid residues to prevent bacterial biofilm [methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli] formation on the surface of model implants made from polymethylmethacrylate-based bone cement was evaluated by colony-forming unit (c.f.u.) counting of bacteria released by sonication from the biofilms formed on their surfaces. The biofilms on model implant surfaces were also visualized by light microscopy after staining with tetrazolium dye (MTT) and by scanning electron microscopy. RESULTS: When incorporated in the implants, these peptides caused a mean reduction in the number of bacterial cells attached to implants' surfaces (by five orders of magnitude), and 88 % of these implants showed no bacterial adhesion after being exposed to growth media containing various bacteria. CONCLUSION: The results showed that the antibiofilm activity of these peptides was comparable to that of the antibiotics, but the peptides exhibited broader specificity than the antibiotics. Given the rapid development of antibiotic resistance, antimicrobial peptides show promise as a substitute for antibiotics for loading into bone cements.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027613
- 003
- CZ-PrNML
- 005
- 20190823125229.0
- 007
- ta
- 008
- 190813s2019 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1099/jmm.0.001000 $2 doi
- 035 __
- $a (PubMed)31107198
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Volejníková, Andrea $u 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
- 245 10
- $a Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement / $c A. Volejníková, P. Melicherčík, O. Nešuta, E. Vaňková, L. Bednárová, J. Rybáček, V. Čeřovský,
- 520 9_
- $a PURPOSE: Antibiotic-loaded polymethylmethacrylate-based bone cement has been implemented in orthopaedics to cope with implant-related infections associated with the formation of bacterial biofilms. In the context of emerging bacterial resistance to current antibiotics, we examined the efficacy of short antimicrobial peptide-loaded bone cement in inhibiting bacterial adhesion and consequent biofilm formation on its surface. METHODOLOGY: The ability of α-helical antimicrobial peptides composed of 12 amino acid residues to prevent bacterial biofilm [methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli] formation on the surface of model implants made from polymethylmethacrylate-based bone cement was evaluated by colony-forming unit (c.f.u.) counting of bacteria released by sonication from the biofilms formed on their surfaces. The biofilms on model implant surfaces were also visualized by light microscopy after staining with tetrazolium dye (MTT) and by scanning electron microscopy. RESULTS: When incorporated in the implants, these peptides caused a mean reduction in the number of bacterial cells attached to implants' surfaces (by five orders of magnitude), and 88 % of these implants showed no bacterial adhesion after being exposed to growth media containing various bacteria. CONCLUSION: The results showed that the antibiofilm activity of these peptides was comparable to that of the antibiotics, but the peptides exhibited broader specificity than the antibiotics. Given the rapid development of antibiotic resistance, antimicrobial peptides show promise as a substitute for antibiotics for loading into bone cements.
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a antiinfekční látky $x farmakologie $7 D000890
- 650 _2
- $a bakteriální adheze $x účinky léků $7 D001422
- 650 _2
- $a biofilmy $x účinky léků $x růst a vývoj $7 D018441
- 650 _2
- $a kostní cementy $7 D001843
- 650 _2
- $a methicilin rezistentní Staphylococcus aureus $x účinky léků $x růst a vývoj $7 D055624
- 650 _2
- $a mikrobiální testy citlivosti $7 D008826
- 650 _2
- $a peptidy $x chemická syntéza $x farmakologie $7 D010455
- 650 _2
- $a polymethylmethakrylát $7 D019904
- 650 _2
- $a protézy a implantáty $x mikrobiologie $7 D019736
- 650 _2
- $a Pseudomonas aeruginosa $x účinky léků $x růst a vývoj $7 D011550
- 650 _2
- $a Staphylococcus epidermidis $x účinky léků $x růst a vývoj $7 D013212
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Melicherčík, Pavel $u 2 Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic.
- 700 1_
- $a Nešuta, Ondřej $u 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Vaňková, Eva $u 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Bednárová, Lucie $u 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Rybáček, Jiří $u 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Čeřovský, Václav $u 1 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
- 773 0_
- $w MED00002792 $t Journal of medical microbiology $x 1473-5644 $g Roč. 68, č. 6 (2019), s. 961-972
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31107198 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190823125444 $b ABA008
- 999 __
- $a ok $b bmc $g 1432762 $s 1066073
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 68 $c 6 $d 961-972 $e 20190520 $i 1473-5644 $m Journal of Medical Microbiology $n J Med Microbiol $x MED00002792
- GRA __
- $a NV16-27726A $p MZ0
- LZP __
- $a Pubmed-20190813