-
Je něco špatně v tomto záznamu ?
In vivo fluorescent cercariae reveal the entry portals of Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Strigeidae) into the gilthead seabream Sparus aurata L
GS. van Beest, M. Villar-Torres, JA. Raga, FE. Montero, A. Born-Torrijos,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
MSM200961706
Akademie Věd České Republiky
AGL2015-68405-R
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Prometeo/2015/018
Conselleria d'Educació, Investigació, Cultura i Esport
Revidpaqua ISIC/2012/003
Conselleria d'Educació, Investigació, Cultura i Esport
P505/12/G112
ECIP (European Centre of Ichthyoparasitology); Centre of excellence program of the Czech Science Foundation
NLK
BioMedCentral
od 2008-12-01
BioMedCentral Open Access
od 2008
Directory of Open Access Journals
od 2008
Free Medical Journals
od 2008
PubMed Central
od 2008
Europe PubMed Central
od 2008
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2008-01-01
Open Access Digital Library
od 2008-01-01
Medline Complete (EBSCOhost)
od 2009-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2008
Springer Nature OA/Free Journals
od 2008-12-01
- MeSH
- benzimidazoly MeSH
- cerkárie MeSH
- fluoresceiny MeSH
- fluorescenční barviva * MeSH
- infekce červy třídy Trematoda přenos veterinární MeSH
- interakce hostitele a parazita * MeSH
- larva MeSH
- metacerkárie MeSH
- mořan zlatý parazitologie MeSH
- nemoci ryb parazitologie MeSH
- stadia vývoje MeSH
- sukcinimidy MeSH
- Trematoda růst a vývoj fyziologie MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Despite their complex life-cycles involving various types of hosts and free-living stages, digenean trematodes are becoming recurrent model systems. The infection and penetration strategy of the larval stages, i.e. cercariae, into the fish host is poorly understood and information regarding their entry portals is not well-known for most species. Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Digenea, Strigeidae) uses the gilthead seabream (Sparus aurata L.), an important marine fish in Mediterranean aquaculture, as a second intermediate host, where they encyst in the brain as metacercariae. Labelling the cercariae with in vivo fluorescent dyes helped us to track their entry into the fish, revealing the penetration pattern that C. longicollis uses to infect S. aurata. METHODS: Two different fluorescent dyes were used: carboxyfluorescein diacetate succinimidyl ester (CFSE) and Hoechst 33342 (NB). Three ascending concentrations of each dye were tested to detect any effect on labelled cercarial performance, by recording their survival for the first 5 h post-labelling (hpl) and 24 hpl, as well as their activity for 5 hpl. Labelled cercariae were used to track the penetration points into fish, and cercarial infectivity and later encystment were analysed by recording brain-encysted metacercariae in fish infected with labelled and control cercariae after 20 days of infection. RESULTS: Although the different dye concentrations showed diverse effects on both survival and activity, intermediate doses of CFSE did not show any short-term effect on survival, permitting a brighter and longer recognition of cercariae on the host body surface. Therefore, CFSE helped to determine the penetration points of C. longicollis into the fish, denoting their aggregation on the head, eye and gills region, as well as on the dorsal fin and the lower side. Only CFSE-labelled cercariae showed a decreased number of encysted metacercariae when compared to control. CONCLUSIONS: Our study suggests that CFSE is an adequate labelling method for short-term in vivo studies, whereas NB would better suit in vivo studies on long-term performance. Cardiocephaloides longicollis cercariae seem to be attracted to areas near to the brain or those that are likely to be connected to migration routes to neuronal canals.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027718
- 003
- CZ-PrNML
- 005
- 20190822090028.0
- 007
- ta
- 008
- 190813s2019 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s13071-019-3351-9 $2 doi
- 035 __
- $a (PubMed)30867029
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a van Beest, Gabrielle S $u Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain. gavanbe@alumni.uv.es. Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic. gavanbe@alumni.uv.es.
- 245 10
- $a In vivo fluorescent cercariae reveal the entry portals of Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Strigeidae) into the gilthead seabream Sparus aurata L / $c GS. van Beest, M. Villar-Torres, JA. Raga, FE. Montero, A. Born-Torrijos,
- 520 9_
- $a BACKGROUND: Despite their complex life-cycles involving various types of hosts and free-living stages, digenean trematodes are becoming recurrent model systems. The infection and penetration strategy of the larval stages, i.e. cercariae, into the fish host is poorly understood and information regarding their entry portals is not well-known for most species. Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Digenea, Strigeidae) uses the gilthead seabream (Sparus aurata L.), an important marine fish in Mediterranean aquaculture, as a second intermediate host, where they encyst in the brain as metacercariae. Labelling the cercariae with in vivo fluorescent dyes helped us to track their entry into the fish, revealing the penetration pattern that C. longicollis uses to infect S. aurata. METHODS: Two different fluorescent dyes were used: carboxyfluorescein diacetate succinimidyl ester (CFSE) and Hoechst 33342 (NB). Three ascending concentrations of each dye were tested to detect any effect on labelled cercarial performance, by recording their survival for the first 5 h post-labelling (hpl) and 24 hpl, as well as their activity for 5 hpl. Labelled cercariae were used to track the penetration points into fish, and cercarial infectivity and later encystment were analysed by recording brain-encysted metacercariae in fish infected with labelled and control cercariae after 20 days of infection. RESULTS: Although the different dye concentrations showed diverse effects on both survival and activity, intermediate doses of CFSE did not show any short-term effect on survival, permitting a brighter and longer recognition of cercariae on the host body surface. Therefore, CFSE helped to determine the penetration points of C. longicollis into the fish, denoting their aggregation on the head, eye and gills region, as well as on the dorsal fin and the lower side. Only CFSE-labelled cercariae showed a decreased number of encysted metacercariae when compared to control. CONCLUSIONS: Our study suggests that CFSE is an adequate labelling method for short-term in vivo studies, whereas NB would better suit in vivo studies on long-term performance. Cardiocephaloides longicollis cercariae seem to be attracted to areas near to the brain or those that are likely to be connected to migration routes to neuronal canals.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vodní hospodářství $7 D017756
- 650 _2
- $a benzimidazoly $7 D001562
- 650 _2
- $a cerkárie $7 D058487
- 650 _2
- $a nemoci ryb $x parazitologie $7 D005393
- 650 _2
- $a fluoresceiny $7 D005452
- 650 12
- $a fluorescenční barviva $7 D005456
- 650 12
- $a interakce hostitele a parazita $7 D006790
- 650 _2
- $a larva $7 D007814
- 650 _2
- $a stadia vývoje $7 D008018
- 650 _2
- $a metacerkárie $7 D058488
- 650 _2
- $a mořan zlatý $x parazitologie $7 D021541
- 650 _2
- $a sukcinimidy $7 D013388
- 650 _2
- $a Trematoda $x růst a vývoj $x fyziologie $7 D014200
- 650 _2
- $a infekce červy třídy Trematoda $x přenos $x veterinární $7 D014201
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Villar-Torres, Mar $u Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain.
- 700 1_
- $a Raga, Juan Antonio $u Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain.
- 700 1_
- $a Montero, Francisco Esteban $u Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain.
- 700 1_
- $a Born-Torrijos, Ana $u Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain. Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- 773 0_
- $w MED00165371 $t Parasites & vectors $x 1756-3305 $g Roč. 12, č. 1 (2019), s. 92
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30867029 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190822090307 $b ABA008
- 999 __
- $a ok $b bmc $g 1432867 $s 1066178
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 12 $c 1 $d 92 $e 20190312 $i 1756-3305 $m Parasites & vectors $n Parasit Vectors $x MED00165371
- GRA __
- $a MSM200961706 $p Akademie Věd České Republiky
- GRA __
- $a AGL2015-68405-R $p Ministerio de Economía, Industria y Competitividad, Gobierno de España
- GRA __
- $a Prometeo/2015/018 $p Conselleria d'Educació, Investigació, Cultura i Esport
- GRA __
- $a Revidpaqua ISIC/2012/003 $p Conselleria d'Educació, Investigació, Cultura i Esport
- GRA __
- $a P505/12/G112 $p ECIP (European Centre of Ichthyoparasitology); Centre of excellence program of the Czech Science Foundation
- LZP __
- $a Pubmed-20190813