-
Something wrong with this record ?
Transcriptomic profile of cell cycle progression genes in human ovarian granulosa cells
M. Brązert, D. Iżycki, W. Kranc, B. Borowiec, M. Popis, P. Celichowski, K. Ożegowska, M. Jankowski, M. Jeseta, L. Pawelczyk, A. Bręborowicz, D. Rachoń, M. Nowicki, B. Kempisty,
Language English Country Italy
Document type Journal Article
PubMed
30761814
Knihovny.cz E-resources
- MeSH
- Cell Cycle * MeSH
- Granulosa Cells cytology MeSH
- Humans MeSH
- Ovarian Follicle cytology MeSH
- Transcriptome * MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The ovarian granulosa cells (GCs) that form the structure of follicle undergo substantial modification during the various stages of human folliculogenesis. These modifications include morphological changes, accompanied by differential expression of genes, encoding proteins which are mainly involved in cell growth, proliferation and differentiation. Recent data bring a new insight into the aspects of GCs' stem-like specificity and plasticity, enabling their prolonged proliferation and differentiation into other cell types. This manuscript focuses attention on emerging alterations during GC cell cycle - a series of biochemical and biophysical changes within the cell. Human GCs were collected from follicles of women set to undergo intracytoplasmic sperm injection procedure, as a part of remnant follicular fluid. The cells were primarily cultured for 30 days. Throughout this time, we observed the prominent change in cell morphology from epithelial-like to fibroblast-like, suggesting differentiation to other cell types. Additionally, at days 1, 7, 15 and 30, the RNA was isolated for molecular assays. Using Affymetrix® Human Genome U219 Array, we found 2579 human transcripts that were differentially expressed in GCs. From these genes, we extracted 582 Gene Ontology Biological Process (GO BP) Terms and 45 KEGG pathways, among which we investigated transcripts belonging to four GO BPs associated with cell proliferation: "cell cycle phase transition", "G1/S phase transition", G2/M phase transition" and "cell cycle checkpoint". Microarray results were validated by RT-qPCR. Increased expression of all the genes studied indicated that increase in GC proliferation during long-term in vitro culture is orchestrated by the up-regulation of genes related to cell cycle control. Furthermore, observed changes in cell morphology may be regulated by a presented set of genes, leading to the induction of pathways specific for stemness plasticity and transdifferentiation in vitro.
Department of Anatomy Poznan University of Medical Sciences Poznan Poland
Department of Clinical and Experimental Endocrinology of the Medical University of Gdansk Poland
Department of Histology and Embryology Poznan University of Medical Sciences Poznan Poland
Department of Pathophysiology Poznan University of Medical Sciences Poznan Poland
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027817
- 003
- CZ-PrNML
- 005
- 20190815123022.0
- 007
- ta
- 008
- 190813s2019 it f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)30761814
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a it
- 100 1_
- $a Brązert, M $u Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland.
- 245 10
- $a Transcriptomic profile of cell cycle progression genes in human ovarian granulosa cells / $c M. Brązert, D. Iżycki, W. Kranc, B. Borowiec, M. Popis, P. Celichowski, K. Ożegowska, M. Jankowski, M. Jeseta, L. Pawelczyk, A. Bręborowicz, D. Rachoń, M. Nowicki, B. Kempisty,
- 520 9_
- $a The ovarian granulosa cells (GCs) that form the structure of follicle undergo substantial modification during the various stages of human folliculogenesis. These modifications include morphological changes, accompanied by differential expression of genes, encoding proteins which are mainly involved in cell growth, proliferation and differentiation. Recent data bring a new insight into the aspects of GCs' stem-like specificity and plasticity, enabling their prolonged proliferation and differentiation into other cell types. This manuscript focuses attention on emerging alterations during GC cell cycle - a series of biochemical and biophysical changes within the cell. Human GCs were collected from follicles of women set to undergo intracytoplasmic sperm injection procedure, as a part of remnant follicular fluid. The cells were primarily cultured for 30 days. Throughout this time, we observed the prominent change in cell morphology from epithelial-like to fibroblast-like, suggesting differentiation to other cell types. Additionally, at days 1, 7, 15 and 30, the RNA was isolated for molecular assays. Using Affymetrix® Human Genome U219 Array, we found 2579 human transcripts that were differentially expressed in GCs. From these genes, we extracted 582 Gene Ontology Biological Process (GO BP) Terms and 45 KEGG pathways, among which we investigated transcripts belonging to four GO BPs associated with cell proliferation: "cell cycle phase transition", "G1/S phase transition", G2/M phase transition" and "cell cycle checkpoint". Microarray results were validated by RT-qPCR. Increased expression of all the genes studied indicated that increase in GC proliferation during long-term in vitro culture is orchestrated by the up-regulation of genes related to cell cycle control. Furthermore, observed changes in cell morphology may be regulated by a presented set of genes, leading to the induction of pathways specific for stemness plasticity and transdifferentiation in vitro.
- 650 12
- $a buněčný cyklus $7 D002453
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a folikulární buňky $x cytologie $7 D006107
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ovariální folikul $x cytologie $7 D006080
- 650 12
- $a transkriptom $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Iżycki, D $u Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences Poznan, Poland.
- 700 1_
- $a Kranc, W $u Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Borowiec, B $u Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Popis, M $u Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Celichowski, P $u Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Ożegowska, K $u Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Jankowski, M $u Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Jeseta, M $u Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Pawelczyk, L $u Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Bręborowicz, A $u Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Rachoń, D $u Department of Clinical and Experimental Endocrinology of the Medical University of Gdansk, Poland.
- 700 1_
- $a Nowicki, M $u Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
- 700 1_
- $a Kempisty, B $u Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland. Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland. Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
- 773 0_
- $w MED00008336 $t Journal of biological regulators and homeostatic agents $x 0393-974X $g Roč. 33, č. 1 (2019), s. 39-51
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30761814 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190815123250 $b ABA008
- 999 __
- $a ok $b bmc $g 1432966 $s 1066277
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 33 $c 1 $d 39-51 $e - $i 0393-974X $m Journal of Biological Regulators & Homeostatic Agents $n J Biol Regul Homeost Agents $x MED00008336
- LZP __
- $a Pubmed-20190813