-
Je něco špatně v tomto záznamu ?
Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy
E. Pagáčová, L. Štefančíková, F. Schmidt-Kaler, G. Hildenbrand, T. Vičar, D. Depeš, JH. Lee, F. Bestvater, S. Lacombe, E. Porcel, S. Roux, F. Wenz, O. Kopečná, I. Falková, M. Hausmann, M. Falk,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
16-29835
Ministerstvo Zdravotnictví Ceské Republiky
16-12454S
Grantová Agentura České Republiky
Mobility Fund
Universität Heidelberg
NV16-29835A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
30704035
DOI
10.3390/ijms20030588
Knihovny.cz E-zdroje
- MeSH
- dvouřetězcové zlomy DNA účinky záření MeSH
- gadolinium chemie MeSH
- HeLa buňky MeSH
- konfokální mikroskopie MeSH
- kovové nanočástice chemie terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- poškození DNA účinky záření MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
Czech Academy of Sciences Institute of Biophysics v v i Kralovopolska 135 612 65 Brno Czech Republic
German Cancer Research Center Im Neuenheimer Feld 280 69120 Heidelberg Germany
Institute UTINAM UMR CNRS 6213 Université de Bourgogne Franche Comté 25020 Besançon Cedex France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027860
- 003
- CZ-PrNML
- 005
- 20210120103102.0
- 007
- ta
- 008
- 190813s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms20030588 $2 doi
- 035 __
- $a (PubMed)30704035
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Pagáčová, Eva $u Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic. pagacova@ibp.cz.
- 245 10
- $a Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy / $c E. Pagáčová, L. Štefančíková, F. Schmidt-Kaler, G. Hildenbrand, T. Vičar, D. Depeš, JH. Lee, F. Bestvater, S. Lacombe, E. Porcel, S. Roux, F. Wenz, O. Kopečná, I. Falková, M. Hausmann, M. Falk,
- 520 9_
- $a From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
- 650 _2
- $a poškození DNA $x účinky záření $7 D004249
- 650 _2
- $a gadolinium $x chemie $7 D005682
- 650 _2
- $a zlato $x chemie $7 D006046
- 650 _2
- $a HeLa buňky $7 D006367
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kovové nanočástice $x chemie $x terapeutické užití $7 D053768
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Štefančíková, Lenka $u Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic. StefancikovaL@seznam.cz. Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France. StefancikovaL@seznam.cz.
- 700 1_
- $a Schmidt-Kaler, Franz $u Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany. franzschmidtkaler@web.de.
- 700 1_
- $a Hildenbrand, Georg $u Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany. hilden@kip.uni-heidelberg.de. Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany. hilden@kip.uni-heidelberg.de.
- 700 1_
- $a Vičar, Tomáš $u Brno University of Technology, Department of Biomedical Engineering, Technická 3082/12, 61600 Brno, Czech Republic. tomasvicar@gmail.com. $7 xx0255929
- 700 1_
- $a Depeš, Daniel $u Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic. depesd26@gmail.com.
- 700 1_
- $a Lee, Jin-Ho $u Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany. jin-ho.lee@kip.uni-heidelberg.de.
- 700 1_
- $a Bestvater, Felix $u German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. f.bestvater@dkfz.de.
- 700 1_
- $a Lacombe, Sandrine $u Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France. sandrine.lacombe@u-psud.fr.
- 700 1_
- $a Porcel, Erika $u Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France. erika.porcel@u-psud.fr.
- 700 1_
- $a Roux, Stéphane $u Institute UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, 25020 Besançon Cedex, France. stephane.roux@univ-fcomte.fr.
- 700 1_
- $a Wenz, Frederik $u Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany. Frederik.Wenz@medma.uni-heidelberg.de.
- 700 1_
- $a Kopečná, Olga $u Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic. kopecna@ibp.cz.
- 700 1_
- $a Falková, Iva $u Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic. ivafalk@ibp.cz.
- 700 1_
- $a Hausmann, Michael $u Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany. hausmann@kip.uni-heidelberg.de.
- 700 1_
- $a Falk, Martin $u Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic. falk@ibp.cz.
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 20, č. 3 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30704035 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20210120103021 $b ABA008
- 999 __
- $a ok $b bmc $g 1433009 $s 1066320
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 20 $c 3 $e 20190130 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a 16-29835 $p Ministerstvo Zdravotnictví Ceské Republiky
- GRA __
- $a 16-12454S $p Grantová Agentura České Republiky
- GRA __
- $a Mobility Fund $p Universität Heidelberg
- GRA __
- $a NV16-29835A $p MZ0
- LZP __
- $a Pubmed-20190813