-
Something wrong with this record ?
Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation
I. Garcia-Saez, H. Menoni, R. Boopathi, MS. Shukla, L. Soueidan, M. Noirclerc-Savoye, A. Le Roy, DA. Skoufias, J. Bednar, A. Hamiche, D. Angelov, C. Petosa, S. Dimitrov,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Cell Press Free Archives
from 1997-12-01 to 1 year ago
Free Medical Journals
from 1997 to 1 year ago
Free Medical Journals
from 1997 to 1 year ago
Open Access Digital Library
from 1997-12-01
- MeSH
- DNA chemistry genetics metabolism MeSH
- Cryoelectron Microscopy MeSH
- Escherichia coli genetics metabolism MeSH
- Gene Expression MeSH
- Genetic Vectors chemistry metabolism MeSH
- Histones chemistry genetics metabolism MeSH
- Hydroxyl Radical chemistry MeSH
- Protein Interaction Domains and Motifs MeSH
- Cloning, Molecular MeSH
- Protein Conformation, alpha-Helical MeSH
- Protein Conformation, beta-Strand MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Nucleosomes chemistry metabolism ultrastructure MeSH
- Osmolar Concentration MeSH
- Nucleosome Assembly Protein 1 chemistry genetics metabolism MeSH
- Recombinant Proteins chemistry genetics metabolism MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Xenopus laevis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Chromatin adopts a diversity of regular and irregular fiber structures in vitro and in vivo. However, how an array of nucleosomes folds into and switches between different fiber conformations is poorly understood. We report the 9.7 Å resolution crystal structure of a 6-nucleosome array bound to linker histone H1 determined under ionic conditions that favor incomplete chromatin condensation. The structure reveals a flat two-start helix with uniform nucleosomal stacking interfaces and a nucleosome packing density that is only half that of a twisted 30-nm fiber. Hydroxyl radical footprinting indicates that H1 binds the array in an on-dyad configuration resembling that observed for mononucleosomes. Biophysical, cryo-EM, and crosslinking data validate the crystal structure and reveal that a minor change in ionic environment shifts the conformational landscape to a more compact, twisted form. These findings provide insights into the structural plasticity of chromatin and suggest a possible assembly pathway for a 30-nm fiber.
Roumen Tsanev Institute of Molecular Biology Bulgarian Academy of Sciences Sofia Bulgaria
Université Grenoble Alpes CNRS CEA Institut de Biologie Structurale 38000 Grenoble France
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028115
- 003
- CZ-PrNML
- 005
- 20190823102449.0
- 007
- ta
- 008
- 190813s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.molcel.2018.09.027 $2 doi
- 035 __
- $a (PubMed)30392928
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Garcia-Saez, Isabel $u Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
- 245 10
- $a Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation / $c I. Garcia-Saez, H. Menoni, R. Boopathi, MS. Shukla, L. Soueidan, M. Noirclerc-Savoye, A. Le Roy, DA. Skoufias, J. Bednar, A. Hamiche, D. Angelov, C. Petosa, S. Dimitrov,
- 520 9_
- $a Chromatin adopts a diversity of regular and irregular fiber structures in vitro and in vivo. However, how an array of nucleosomes folds into and switches between different fiber conformations is poorly understood. We report the 9.7 Å resolution crystal structure of a 6-nucleosome array bound to linker histone H1 determined under ionic conditions that favor incomplete chromatin condensation. The structure reveals a flat two-start helix with uniform nucleosomal stacking interfaces and a nucleosome packing density that is only half that of a twisted 30-nm fiber. Hydroxyl radical footprinting indicates that H1 binds the array in an on-dyad configuration resembling that observed for mononucleosomes. Biophysical, cryo-EM, and crosslinking data validate the crystal structure and reveal that a minor change in ionic environment shifts the conformational landscape to a more compact, twisted form. These findings provide insights into the structural plasticity of chromatin and suggest a possible assembly pathway for a 30-nm fiber.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a klonování DNA $7 D003001
- 650 _2
- $a elektronová kryomikroskopie $7 D020285
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a DNA $x chemie $x genetika $x metabolismus $7 D004247
- 650 _2
- $a Escherichia coli $x genetika $x metabolismus $7 D004926
- 650 _2
- $a exprese genu $7 D015870
- 650 _2
- $a genetické vektory $x chemie $x metabolismus $7 D005822
- 650 _2
- $a histony $x chemie $x genetika $x metabolismus $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydroxylový radikál $x chemie $7 D017665
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a protein 1 vytvářející nukleozómy $x chemie $x genetika $x metabolismus $7 D056490
- 650 _2
- $a nukleozomy $x chemie $x metabolismus $x ultrastruktura $7 D009707
- 650 _2
- $a osmolární koncentrace $7 D009994
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů, alfa-helix $7 D000072756
- 650 _2
- $a konformace proteinů, beta-řetězec $7 D000072757
- 650 _2
- $a interakční proteinové domény a motivy $7 D054730
- 650 _2
- $a multimerizace proteinu $7 D055503
- 650 _2
- $a rekombinantní proteiny $x chemie $x genetika $x metabolismus $7 D011994
- 650 _2
- $a Xenopus laevis $7 D014982
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Menoni, Hervé $u Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France.
- 700 1_
- $a Boopathi, Ramachandran $u Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France.
- 700 1_
- $a Shukla, Manu S $u Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France.
- 700 1_
- $a Soueidan, Lama $u Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France.
- 700 1_
- $a Noirclerc-Savoye, Marjolaine $u Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
- 700 1_
- $a Le Roy, Aline $u Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
- 700 1_
- $a Skoufias, Dimitrios A $u Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
- 700 1_
- $a Bednar, Jan $u Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic. Electronic address: jan.bednar@univ-grenoble-alpes.fr.
- 700 1_
- $a Hamiche, Ali $u Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France. Electronic address: hamiche@igbmc.fr.
- 700 1_
- $a Angelov, Dimitar $u Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France. Electronic address: dimitar.anguelov@ens-lyon.fr.
- 700 1_
- $a Petosa, Carlo $u Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France. Electronic address: carlo.petosa@ibs.fr.
- 700 1_
- $a Dimitrov, Stefan $u Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria. Electronic address: stefan.dimitrov@univ-grenoble-alpes.fr.
- 773 0_
- $w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 72, č. 5 (2018), s. 902-915.e7
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30392928 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190823102703 $b ABA008
- 999 __
- $a ok $b bmc $g 1433264 $s 1066575
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 72 $c 5 $d 902-915.e7 $e 20181101 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
- LZP __
- $a Pubmed-20190813