Complex study on compression of ECG signals using novel single-cycle fractal-based algorithm and SPIHT

. 2020 Sep 25 ; 10 (1) : 15801. [epub] 20200925

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32978481
Odkazy

PubMed 32978481
PubMed Central PMC7519154
DOI 10.1038/s41598-020-72656-6
PII: 10.1038/s41598-020-72656-6
Knihovny.cz E-zdroje

Compression of ECG signal is essential especially in the area of signal transmission in telemedicine. There exist many compression algorithms which are described in various details, tested on various datasets and their performance is expressed by different ways. There is a lack of standardization in this area. This study points out these drawbacks and presents new compression algorithm which is properly described, tested and objectively compared with other authors. This study serves as an example how the standardization should look like. Single-cycle fractal-based (SCyF) compression algorithm is introduced and tested on 4 different databases-CSE database, MIT-BIH arrhythmia database, High-frequency signal and Brno University of Technology ECG quality database (BUT QDB). SCyF algorithm is always compared with well-known algorithm based on wavelet transform and set partitioning in hierarchical trees in terms of efficiency (2 methods) and quality/distortion of the signal after compression (12 methods). Detail analysis of the results is provided. The results of SCyF compression algorithm reach up to avL = 0.4460 bps and PRDN = 2.8236%.

Zobrazit více v PubMed

World Health Organization . WHO Launches Digital App to Improve Care for Older People. Geneva: World Health Organization; 2019.

World Health Organization . Global Status Report on Noncommunicable Diseases. Geneva: World Health Organization; 2014. PubMed

World Health Organization . Cardiovascular Diseases (CVDs) Geneva: World Health Organization; 2017.

World Health Organization . Global Diffusion of eHealth: Making Universal Health Coverage Achievable. Geneva: World Health Organization; 2016.

Khunti K. Accurate interpretation of the 12-lead ECG electrode placement: a systematic review. Health Educ. J. 2014;73:610–623. doi: 10.1177/0017896912472328. DOI

Raeiatibanadkooki M, Quchani SR, KhalilZade M, Bahaadinbeigy K. Compression and encryption of ECG signal using wavelet and chaotically huffman code in telemedicine application. J. Med. Syst. 2016;40:8. doi: 10.1007/s10916-016-0433-5. PubMed DOI

Kligfield P, et al. Recommendations for the standardization and interpretation of the electrocardiogram—part i: the electrocardiogram and its technology—a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2007;49:1109–1127. doi: 10.1016/j.jacc.2007.01.024. PubMed DOI

Craven D, McGinley B, Kilmartin L, Glavin M, Jones E. Impact of compressed sensing on clinically relevant metrics for ambulatory ECG monitoring. Electron. Lett. 2015;51:323–324. doi: 10.1049/el.2014.4188. DOI

Elgendi M, Al-Ali A, Mohamed A, Ward R. Improving remote health monitoring: a low-complexity ECG compression approach. Diagnostics (Basel) 2018;8:10. doi: 10.3390/diagnostics8010010. PubMed DOI PMC

Twomey, N. et al. The effect of lossy ECG compression on QRS and HRV feature extraction. In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 10). 634–637 (IEEE, 2010). PubMed

Lin, Y. & Fang, Y. A fast fractal model based ECG compression technique. In Proceedings of the 2015 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015)37, 150–157 (2015).

Manikandan MS, Dandapat S. Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomed. Signal Process. Control. 2014;14:73–107. doi: 10.1016/j.bspc.2014.07.002. DOI

Lu ZT, Kim DY, Pearlman WA. Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Trans. Biomed. Eng. 2000;47:849–856. doi: 10.1109/10.846678. PubMed DOI

Lee S, Kim J, Lee M. A real-time ECG data compression and transmission algorithm for an e-Health device. IEEE Trans. Biomed. Eng. 2011;58:2448–2455. doi: 10.1109/tbme.2011.2156794. PubMed DOI

Nemcova A, Smisek R, Marsanova L, Smital L, Vitek M. A comparative analysis of methods for evaluation of ECG signal quality after compression. Biomed. Res. Int. 2018 doi: 10.1155/2018/1868519. PubMed DOI PMC

Kale, S. B. & Gawali, D. H. Review of ECG compression techniques and implementations. In Proceedings of International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC 2016). 623–627 (2016).

Hrubes J, Vitek M, Kozumplik J. Possibilities of wavelet decomposition for SPIHT compression of ECG signals. Anal. Biomed. Signals Images. 2008;19:451–454.

Agulhari CM, Bonatti IS, Peres PLD. An adaptive run length encoding method for the compression of electrocardiograms. Med. Eng. Phys. 2013;35:145–153. doi: 10.1016/j.medengphy.2010.03.003. PubMed DOI

Bilgin A, Marcellin MW, Altbach MI. Compression of electrocardiogram signals using JPEG2000. IEEE Trans. Consum. Electron. 2003;49:833–840. doi: 10.1109/tce.2003.1261162. DOI

Pandey A, Saini BS, Singh B, Sood N. Quality controlled ECG data compression based on 2D discrete cosine coefficients filtering and iterative JPEG2000 encoding. Measurement. 2020 doi: 10.1016/j.measurement.2019.107252. DOI

Jha, C. K. & Kolekar, M. H. Efficient ECG data compression and transmission algorithm for telemedicine. In 8th International Conference on Communication Systems and Networks (COMSNETS). (IEEE, 2016).

Padhy S, Sharma LN, Dandapat S. Multilead ECG data compression using SVD in multiresolution domain. Biomed. Signal Process. Control. 2016;23:10–18. doi: 10.1016/j.bspc.2015.06.012. DOI

Bera P, Gupta R, Saha J. Preserving abnormal beat morphology in long-term ECG recording: an efficient hybrid compression approach. IEEE Trans. Instrum. Meas. 2020;69(5):2084–2092. doi: 10.1109/TIM.2019.2922054. DOI

Khalaj, A. & Naimi, H. M. New efficient fractal based compression method for electrocardiogram signals. In 2009 IEEE 22nd Canadian Conference on Electrical and Computer Engineering, Vols 1 and 2, 160–163 (2009).

Ibaida A, Al-Shammary D, Khalil I. Cloud enabled fractal based ECG compression in wireless body sensor networks. Future Gen. Comput. Syst. Int. J. Esci. 2014;35:91–101. doi: 10.1016/j.future.2013.12.025. DOI

Liu S, Pan Z, Cheng X. A novel fast fractal image compression method based on distance clustering in high dimensional sphere surface. Fractals. 2017;25(4):1740004-1-11.

Liu S, Bai W, Liu G, Li W, Srivastava HM. Parallel fractal compression method for big video data. Complexity. 2018 doi: 10.1155/2018/2016976. DOI

Balestrieri, E., De Vito, L., Picariello F. & Tudosa, I. A novel method for compressed sensing based sampling of ECG signals in medical-IOT era. In IEEE International Symposium on Medical Measurements and Applications. 10.1109/MeMeA.2019.8802184. (IEEE, 2019).

Adamo A, Grossi G, Lanzarotti R, Lin JY. ECG compression retaining the best natural basis k-coefficients via sparse decomposition. Biomed. Signal Process. Control. 2015;15:11–17. doi: 10.1016/j.bspc.2014.09.002. DOI

Singh A, Sharma LN, Dandapat S. Multi-channel ECG data compression using compressed sensing in eigenspace. Comput. Biol. Med. 2016;73:24–37. doi: 10.1016/j.compbiomed.2016.03.021. PubMed DOI

Nasimi F, Khayyambashi MR, Movahhedinia N, Law YW. Exploiting similar prior knowledge for compressing ECG signals. Biomed. Signal Process. Control. 2020 doi: 10.1016/j.bspc.2020.101960. DOI

Khaldi K, Boudraa AO. On signals compression by EMD. Electron. Lett. 2012;48:1329–1330. doi: 10.1049/el.2012.0737. DOI

Zhao CJ, Chen ZJ, Meng JY, Xiang XY. Electrocardiograph compression based on sifting process of empirical mode decomposition. Electron. Lett. 2016;52:688–689. doi: 10.1049/el.2015.3391. DOI

Wang XX, Chen ZJ, Luo JH, Meng JY, Xu Y. ECG compression based on combining of EMD and wavelet transform. Electron. Lett. 2016;52:2. doi: 10.1049/el.2016.2174. DOI

Jha CK, Kolekar MH. Empirical mode decomposition and wavelet transform based ECG data compression scheme. IRBM. 2020 doi: 10.1016/j.irbm.2020.05.008. DOI

Ma JL, Zhang TT, Dong MC. A Novel ECG data compression method using adaptive Fourier decomposition with security guarantee in e-Health applications. IEEE J. Biomed. Health Inform. 2015;19:986–994. doi: 10.1109/jbhi.2014.2357841. PubMed DOI

Fira CM, Goras L. An ECG signals compression method and its validation using NNs. IEEE Trans. Biomed. Eng. 2008;55:1319–1326. doi: 10.1109/tbme.2008.918465. PubMed DOI

Tan Ch, Zhang L, Wu H-T. A novel Blaschke unwinding adaptive-Fourier-decomposition-based signal compression algorithm with application on ECG signals. IEEE J. Biomed. Health Inform. 2019 doi: 10.1109/JBHI.2018.2817192. PubMed DOI

Wang F, et al. A novel ECG signal compression method using spindle convolutional auto-encoder. Comput. Methods Programs Biomed. 2019;175:139–150. doi: 10.1016/j.cmpb.2019.03.019. PubMed DOI

Jalaleddine SMS, Hutchens CG, Strattan RD, Coberly WA. ECG data-compression techniques—a unified approach. IEEE Trans. Biomed. Eng. 1990;37:329–343. doi: 10.1109/10.52340. PubMed DOI

Rajankar SO, Talbar SN. An electrocardiogram signal compression techniques: a comprehensive review. Anal. Integr. Circ. Sig. Process. 2019;98:59–74. doi: 10.1007/s10470-018-1323-1. DOI

Tiwari A, Falk TH. Lossless electrocardiogram signal compression: a review of existing methods. Biomed. Signal Process. Control. 2019;51:338–346. doi: 10.1016/j.bspc.2019.03.004. DOI

Dandapat S, Sharma LN, Tripathy RK. Quantification of diagnostic information from electrocardiogram signal: a review. Adv. Commun. Comput. 2015;347:17–39. doi: 10.1007/978-81-322-2464-8_2. DOI

Hadjileontiadis, L. J. Biosignals and Compression Standards. M-Health: Emerging mobile health systems. 277–292 (Springer, 2006).

The CSE Working Party. Common standards for quantitative electrocardiography [CD-ROM]. (1990).

Smisek R, et al. CSE database: extended annotations and new recommendations for ECG software testing. Med. Biol. Eng. Comput. 2017;55:1473–1482. doi: 10.1007/s11517-016-1607-5. PubMed DOI

Goldberger AL, et al. PhysioBank, PhysioToolkit, and PhysioNet—components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–E220. PubMed

Moody GA, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001;20:45–50. doi: 10.1109/51.932724. PubMed DOI

Jurak, P. et al. Ultra-high-frequency ECG measurement. In 2013 Computing in Cardiology Conference (CINC)40, 783–786 (2013).

Jurak P, et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J. Interv. Cardiac. Electrophysiol. 2017;49:245–254. doi: 10.1007/s10840-017-0268-0. PubMed DOI PMC

Nemcova A, et al. Brno University of Technology ECG Quality Database (BUT QDB) (version 1.0.0) PhysioNet. 2020 doi: 10.13026/kah4-0w24. DOI

Al-Shammary, D. & Khalil, I. Dynamic fractal clustering technique for SOAP web messages. In Proceedings of 2011 IEEE International Conference on Services Computing (SCC 2011). 96–103 (2011).

Nemcova, A., Vitek, M., Marsanova, L., Smisek, R. & Smital, L. Assessment of ECG signal quality after compression. IUPESM World Congress on Medical Physics and Biomedical Engineering. 169–173 (Springer, 2019).

Rebollo-Neira L. Effective high compression of ECG signals at low level distortion. Sci. Rep. 2019;9:12. doi: 10.1038/s41598-019-40350-x. PubMed DOI PMC

Rakshit M, Das S. Electrocardiogram beat type dictionary based compressed sensing for telecardiology application. Biomed. Signal Process. Control. 2019;47:207–218. doi: 10.1016/j.bspc.2018.08.016. DOI

Moody GB, Mark RG, Goldberger AL. Evaluation of the "TRIM" ECG data compressor. Comput. Cardiol. 1988;15:167–170.

Gurkan H. Compression of ECG signals using variable-length classified vector sets and wavelet transforms. EURASIP J. Adv. Signal Process. 2012 doi: 10.1186/1687-6180-2012-119. DOI

Vitek M, Hrubes J, Kozumplik J. A Wavelet-based ECG delineation with improved P wave offset detection accuracy. Anal. Biomed. Signals Images. 2010;20:160–165.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pathologies affect the performance of ECG signals compression

. 2021 May 18 ; 11 (1) : 10514. [epub] 20210518

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...