Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
- MeSH
- Adult MeSH
- Electroencephalography * methods MeSH
- Data Compression * methods MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Signal Processing, Computer-Assisted MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The performance of ECG signals compression is influenced by many things. However, there is not a single study primarily focused on the possible effects of ECG pathologies on the performance of compression algorithms. This study evaluates whether the pathologies present in ECG signals affect the efficiency and quality of compression. Single-cycle fractal-based compression algorithm and compression algorithm based on combination of wavelet transform and set partitioning in hierarchical trees are used to compress 125 15-leads ECG signals from CSE database. Rhythm and morphology of these signals are newly annotated as physiological or pathological. The compression performance results are statistically evaluated. Using both compression algorithms, physiological signals are compressed with better quality than pathological signals according to 8 and 9 out of 12 quality metrics, respectively. Moreover, it was statistically proven that pathological signals were compressed with lower efficiency than physiological signals. Signals with physiological rhythm and physiological morphology were compressed with the best quality. The worst results reported the group of signals with pathological rhythm and pathological morphology. This study is the first one which deals with effects of ECG pathologies on the performance of compression algorithms. Signal-by-signal rhythm and morphology annotations (physiological/pathological) for the CSE database are newly published.
- MeSH
- Algorithms MeSH
- Databases, Factual MeSH
- Electrocardiography methods MeSH
- Fractals MeSH
- Data Compression methods MeSH
- Humans MeSH
- Wavelet Analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
3D macromolecular structural data is growing ever more complex and plentiful in the wake of substantive advances in experimental and computational structure determination methods including macromolecular crystallography, cryo-electron microscopy, and integrative methods. Efficient means of working with 3D macromolecular structural data for archiving, analyses, and visualization are central to facilitating interoperability and reusability in compliance with the FAIR Principles. We address two challenges posed by growth in data size and complexity. First, data size is reduced by bespoke compression techniques. Second, complexity is managed through improved software tooling and fully leveraging available data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallographic Information File (CIF) format files that maintains full compatibility to related data schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two versus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides even better compression-factor ten and four versus CIF files and gzipped CIF files, respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools enable lightweight, efficient, and extensible handling of 3D macromolecular structural data.
- MeSH
- Databases, Chemical MeSH
- Data Compression methods MeSH
- Crystallography methods MeSH
- Macromolecular Substances chemistry ultrastructure MeSH
- Models, Molecular * MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Compression of ECG signal is essential especially in the area of signal transmission in telemedicine. There exist many compression algorithms which are described in various details, tested on various datasets and their performance is expressed by different ways. There is a lack of standardization in this area. This study points out these drawbacks and presents new compression algorithm which is properly described, tested and objectively compared with other authors. This study serves as an example how the standardization should look like. Single-cycle fractal-based (SCyF) compression algorithm is introduced and tested on 4 different databases-CSE database, MIT-BIH arrhythmia database, High-frequency signal and Brno University of Technology ECG quality database (BUT QDB). SCyF algorithm is always compared with well-known algorithm based on wavelet transform and set partitioning in hierarchical trees in terms of efficiency (2 methods) and quality/distortion of the signal after compression (12 methods). Detail analysis of the results is provided. The results of SCyF compression algorithm reach up to avL = 0.4460 bps and PRDN = 2.8236%.
- MeSH
- Algorithms * MeSH
- Databases, Factual * MeSH
- Electrocardiography methods MeSH
- Fractals * MeSH
- Data Compression methods MeSH
- Humans MeSH
- Signal Processing, Computer-Assisted MeSH
- Arrhythmias, Cardiac physiopathology MeSH
- Wavelet Analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Stimulus-frequency otoacoustic emissions (SFOAEs) are generated by coherent reflection of forward traveling waves by perturbations along the basilar membrane. The strongest wavelets are backscattered near the place where the traveling wave reaches its maximal amplitude (tonotopic place). Therefore, the SFOAE group delay might be expected to be twice the group delay estimated in the cochlear filters. However, experimental data have yielded steady-state SFOAE components with near-zero latency. A cochlear model is used to show that short-latency SFOAE components can be generated due to nonlinear reflection of the compressor or suppressor tones used in SFOAE measurements. The simulations indicate that suppressors produce more pronounced short-latency components than compressors. The existence of nonlinear reflection components due to suppressors can also explain why SFOAEs can still be detected when suppressors are presented more than half an octave above the probe-tone frequency. Simulations of the SFOAE suppression tuning curves showed that phase changes in the SFOAE residual as the suppressor frequency increases are mostly determined by phase changes of the nonlinear reflection component.
Despite recent success of deep learning models in numerous applications, their widespread use on mobile devices is seriously impeded by storage and computational requirements. In this paper, we propose a novel network compression method called Adaptive Dimension Adjustment Tucker decomposition (ADA-Tucker). With learnable core tensors and transformation matrices, ADA-Tucker performs Tucker decomposition of arbitrary-order tensors. Furthermore, we propose that weight tensors in networks with proper order and balanced dimension are easier to be compressed. Therefore, the high flexibility in decomposition choice distinguishes ADA-Tucker from all previous low-rank models. To compress more, we further extend the model to Shared Core ADA-Tucker (SCADA-Tucker) by defining a shared core tensor for all layers. Our methods require no overhead of recording indices of non-zero elements. Without loss of accuracy, our methods reduce the storage of LeNet-5 and LeNet-300 by ratios of 691× and 233 ×, respectively, significantly outperforming state of the art. The effectiveness of our methods is also evaluated on other three benchmarks (CIFAR-10, SVHN, ILSVRC12) and modern newly deep networks (ResNet, Wide-ResNet).
- MeSH
- Benchmarking MeSH
- Deep Learning * trends MeSH
- Data Compression methods trends MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
3D imaging approaches based on X-ray microcomputed tomography (microCT) have become increasingly accessible with advancements in methods, instruments and expertise. The synergy of material and life sciences has impacted biomedical research by proposing new tools for investigation. However, data sharing remains challenging as microCT files are usually in the range of gigabytes and require specific and expensive software for rendering and interpretation. Here, we provide an advanced method for visualisation and interpretation of microCT data with small file formats, readable on all operating systems, using freely available Portable Document Format (PDF) software. Our method is based on the conversion of volumetric data into interactive 3D PDF, allowing rotation, movement, magnification and setting modifications of objects, thus providing an intuitive approach to analyse structures in a 3D context. We describe the complete pipeline from data acquisition, data processing and compression, to 3D PDF formatting on an example of craniofacial anatomical morphology in the mouse embryo. Our procedure is widely applicable in biological research and can be used as a framework to analyse volumetric data from any research field relying on 3D rendering and CT-biomedical imaging.
- MeSH
- Models, Anatomic MeSH
- Electronic Data Processing MeSH
- Data Compression statistics & numerical data MeSH
- Skull anatomy & histology embryology MeSH
- Mice MeSH
- Facial Bones anatomy & histology embryology MeSH
- X-Ray Microtomography statistics & numerical data MeSH
- Radiographic Image Interpretation, Computer-Assisted MeSH
- Information Dissemination methods MeSH
- Software * MeSH
- Imaging, Three-Dimensional statistics & numerical data MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The assessment of ECG signal quality after compression is an essential part of the compression process. Compression facilitates the signal archiving, speeds up signal transmission, and reduces the energy consumption. Conversely, lossy compression distorts the signals. Therefore, it is necessary to express the compression performance through both compression efficiency and signal quality. This paper provides an overview of objective algorithms for the assessment of both ECG signal quality after compression and compression efficiency. In this area, there is a lack of standardization, and there is no extensive review as such. 40 methods were tested in terms of their suitability for quality assessment. For this purpose, the whole CSE database was used. The tested signals were compressed using an algorithm based on SPIHT with varying efficiency. As a reference, compressed signals were manually assessed by two experts and classified into three quality groups. Owing to the experts' classification, we determined corresponding ranges of selected quality evaluation methods' values. The suitability of the methods for quality assessment was evaluated based on five criteria. For the assessment of ECG signal quality after compression, we recommend using a combination of these methods: PSim SDNN, QS, SNR1, MSE, PRDN1, MAX, STDERR, and WEDD SWT.
The aim of the article is to present a novel method for fuzzy medical image retrieval (FMIR) using vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy S-trees. In past times, a task of similar pictures searching was not based on searching for similar content (e.g. shapes, colour) of the pictures but on the picture name. There exist some methods for the same purpose, but there is still some space for development of more efficient methods. The proposed image retrieval system is used for finding similar images, in our case in the medical area - in mammography, in addition to the creation of the list of similar images - cases. The created list is used for assessing the nature of the finding - whether the medical finding is malignant or benign. The suggested method is compared to the method using Normalized Compression Distance (NCD) instead of fuzzy signatures and fuzzy S-tree. The method with NCD is useful for the creation of the list of similar cases for malignancy assessment, but it is not able to capture the area of interest in the image. The proposed method is going to be added to the complex decision support system to help to determine appropriate healthcare according to the experiences of similar, previous cases.
- MeSH
- Algorithms MeSH
- Fuzzy Logic * MeSH
- Data Compression MeSH
- Humans MeSH
- Mammography methods MeSH
- Pattern Recognition, Automated methods MeSH
- Decision Support Systems, Clinical organization & administration MeSH
- Information Storage and Retrieval methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.
- MeSH
- Algorithms * MeSH
- Asian People * MeSH
- Data Compression * MeSH
- Humans MeSH
- Vocabulary * MeSH
- Dictionaries as Topic * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH