• Je něco špatně v tomto záznamu ?

ADA-Tucker: Compressing deep neural networks via adaptive dimension adjustment tucker decomposition

Z. Zhong, F. Wei, Z. Lin, C. Zhang,

. 2019 ; 110 (-) : 104-115. [pub] 20181113

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012077

Despite recent success of deep learning models in numerous applications, their widespread use on mobile devices is seriously impeded by storage and computational requirements. In this paper, we propose a novel network compression method called Adaptive Dimension Adjustment Tucker decomposition (ADA-Tucker). With learnable core tensors and transformation matrices, ADA-Tucker performs Tucker decomposition of arbitrary-order tensors. Furthermore, we propose that weight tensors in networks with proper order and balanced dimension are easier to be compressed. Therefore, the high flexibility in decomposition choice distinguishes ADA-Tucker from all previous low-rank models. To compress more, we further extend the model to Shared Core ADA-Tucker (SCADA-Tucker) by defining a shared core tensor for all layers. Our methods require no overhead of recording indices of non-zero elements. Without loss of accuracy, our methods reduce the storage of LeNet-5 and LeNet-300 by ratios of 691× and 233 ×, respectively, significantly outperforming state of the art. The effectiveness of our methods is also evaluated on other three benchmarks (CIFAR-10, SVHN, ILSVRC12) and modern newly deep networks (ResNet, Wide-ResNet).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012077
003      
CZ-PrNML
005      
20190416121445.0
007      
ta
008      
190405s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2018.10.016 $2 doi
035    __
$a (PubMed)30508807
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zhong, Zhisheng $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: zszhong@pku.edu.cn.
245    10
$a ADA-Tucker: Compressing deep neural networks via adaptive dimension adjustment tucker decomposition / $c Z. Zhong, F. Wei, Z. Lin, C. Zhang,
520    9_
$a Despite recent success of deep learning models in numerous applications, their widespread use on mobile devices is seriously impeded by storage and computational requirements. In this paper, we propose a novel network compression method called Adaptive Dimension Adjustment Tucker decomposition (ADA-Tucker). With learnable core tensors and transformation matrices, ADA-Tucker performs Tucker decomposition of arbitrary-order tensors. Furthermore, we propose that weight tensors in networks with proper order and balanced dimension are easier to be compressed. Therefore, the high flexibility in decomposition choice distinguishes ADA-Tucker from all previous low-rank models. To compress more, we further extend the model to Shared Core ADA-Tucker (SCADA-Tucker) by defining a shared core tensor for all layers. Our methods require no overhead of recording indices of non-zero elements. Without loss of accuracy, our methods reduce the storage of LeNet-5 and LeNet-300 by ratios of 691× and 233 ×, respectively, significantly outperforming state of the art. The effectiveness of our methods is also evaluated on other three benchmarks (CIFAR-10, SVHN, ILSVRC12) and modern newly deep networks (ResNet, Wide-ResNet).
650    _2
$a benchmarking $7 D019985
650    _2
$a komprese dat $x metody $x trendy $7 D044962
650    12
$a deep learning $x trendy $7 D000077321
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    12
$a neuronové sítě (počítačové) $7 D016571
655    _2
$a časopisecké články $7 D016428
700    1_
$a Wei, Fangyin $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: weifangyin@pku.edu.cn.
700    1_
$a Lin, Zhouchen $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: zlin@pku.edu.cn.
700    1_
$a Zhang, Chao $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: chzhang@cis.pku.edu.cn.
773    0_
$w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 110, č. - (2019), s. 104-115
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30508807 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190416121511 $b ABA008
999    __
$a ok $b bmc $g 1391387 $s 1050382
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 110 $c - $d 104-115 $e 20181113 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...