-
Je něco špatně v tomto záznamu ?
ADA-Tucker: Compressing deep neural networks via adaptive dimension adjustment tucker decomposition
Z. Zhong, F. Wei, Z. Lin, C. Zhang,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- benchmarking MeSH
- deep learning * trendy MeSH
- komprese dat metody trendy MeSH
- lidé MeSH
- neuronové sítě (počítačové) * MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Despite recent success of deep learning models in numerous applications, their widespread use on mobile devices is seriously impeded by storage and computational requirements. In this paper, we propose a novel network compression method called Adaptive Dimension Adjustment Tucker decomposition (ADA-Tucker). With learnable core tensors and transformation matrices, ADA-Tucker performs Tucker decomposition of arbitrary-order tensors. Furthermore, we propose that weight tensors in networks with proper order and balanced dimension are easier to be compressed. Therefore, the high flexibility in decomposition choice distinguishes ADA-Tucker from all previous low-rank models. To compress more, we further extend the model to Shared Core ADA-Tucker (SCADA-Tucker) by defining a shared core tensor for all layers. Our methods require no overhead of recording indices of non-zero elements. Without loss of accuracy, our methods reduce the storage of LeNet-5 and LeNet-300 by ratios of 691× and 233 ×, respectively, significantly outperforming state of the art. The effectiveness of our methods is also evaluated on other three benchmarks (CIFAR-10, SVHN, ILSVRC12) and modern newly deep networks (ResNet, Wide-ResNet).
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012077
- 003
- CZ-PrNML
- 005
- 20190416121445.0
- 007
- ta
- 008
- 190405s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2018.10.016 $2 doi
- 035 __
- $a (PubMed)30508807
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zhong, Zhisheng $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: zszhong@pku.edu.cn.
- 245 10
- $a ADA-Tucker: Compressing deep neural networks via adaptive dimension adjustment tucker decomposition / $c Z. Zhong, F. Wei, Z. Lin, C. Zhang,
- 520 9_
- $a Despite recent success of deep learning models in numerous applications, their widespread use on mobile devices is seriously impeded by storage and computational requirements. In this paper, we propose a novel network compression method called Adaptive Dimension Adjustment Tucker decomposition (ADA-Tucker). With learnable core tensors and transformation matrices, ADA-Tucker performs Tucker decomposition of arbitrary-order tensors. Furthermore, we propose that weight tensors in networks with proper order and balanced dimension are easier to be compressed. Therefore, the high flexibility in decomposition choice distinguishes ADA-Tucker from all previous low-rank models. To compress more, we further extend the model to Shared Core ADA-Tucker (SCADA-Tucker) by defining a shared core tensor for all layers. Our methods require no overhead of recording indices of non-zero elements. Without loss of accuracy, our methods reduce the storage of LeNet-5 and LeNet-300 by ratios of 691× and 233 ×, respectively, significantly outperforming state of the art. The effectiveness of our methods is also evaluated on other three benchmarks (CIFAR-10, SVHN, ILSVRC12) and modern newly deep networks (ResNet, Wide-ResNet).
- 650 _2
- $a benchmarking $7 D019985
- 650 _2
- $a komprese dat $x metody $x trendy $7 D044962
- 650 12
- $a deep learning $x trendy $7 D000077321
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $7 D000069550
- 650 12
- $a neuronové sítě (počítačové) $7 D016571
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Wei, Fangyin $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: weifangyin@pku.edu.cn.
- 700 1_
- $a Lin, Zhouchen $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: zlin@pku.edu.cn.
- 700 1_
- $a Zhang, Chao $u Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, PR China. Electronic address: chzhang@cis.pku.edu.cn.
- 773 0_
- $w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 110, č. - (2019), s. 104-115
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30508807 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416121511 $b ABA008
- 999 __
- $a ok $b bmc $g 1391387 $s 1050382
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 110 $c - $d 104-115 $e 20181113 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20190405