• Je něco špatně v tomto záznamu ?

Near-lossless EEG signal compression using a convolutional autoencoder: Case study for 256-channel binocular rivalry dataset

M. Kukrál, DT. Pham, J. Kohout, Š. Kohek, M. Havlík, D. Grygarová

. 2025 ; 189 (-) : 109888. [pub] 20250305

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25009288

Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25009288
003      
CZ-PrNML
005      
20250429134545.0
007      
ta
008      
250415e20250305xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2025.109888 $2 doi
035    __
$a (PubMed)40048899
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kukrál, Martin $u Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen, 301 00, Czech Republic. Electronic address: kukrma@students.zcu.cz
245    10
$a Near-lossless EEG signal compression using a convolutional autoencoder: Case study for 256-channel binocular rivalry dataset / $c M. Kukrál, DT. Pham, J. Kohout, Š. Kohek, M. Havlík, D. Grygarová
520    9_
$a Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
650    _2
$a lidé $7 D006801
650    12
$a elektroencefalografie $x metody $7 D004569
650    12
$a komprese dat $x metody $7 D044962
650    12
$a neuronové sítě $7 D016571
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a dospělí $7 D000328
650    _2
$a ženské pohlaví $7 D005260
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pham, Duc Thien $u Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen, 301 00, Czech Republic. Electronic address: ducthien@kiv.zcu.cz
700    1_
$a Kohout, Josef $u Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen, 301 00, Czech Republic. Electronic address: besoft@ntis.zcu.cz
700    1_
$a Kohek, Štefan $u Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, 2000, Slovenia. Electronic address: stefan.kohek@um.si
700    1_
$a Havlík, Marek $u National Institute of Mental Health, Klecany, 250 67, Czech Republic. Electronic address: marek.havlik@nudz.cz
700    1_
$a Grygarová, Dominika $u National Institute of Mental Health, Klecany, 250 67, Czech Republic. Electronic address: dominika.grygarova@nudz.cz
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 189 (20250305), s. 109888
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40048899 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134541 $b ABA008
999    __
$a ok $b bmc $g 2310955 $s 1246369
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 189 $c - $d 109888 $e 20250305 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...