-
Je něco špatně v tomto záznamu ?
Near-lossless EEG signal compression using a convolutional autoencoder: Case study for 256-channel binocular rivalry dataset
M. Kukrál, DT. Pham, J. Kohout, Š. Kohek, M. Havlík, D. Grygarová
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- komprese dat * metody MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
Faculty of Applied Sciences University of West Bohemia in Pilsen Pilsen 301 00 Czech Republic
Faculty of Electrical Engineering and Computer Science University of Maribor Maribor 2000 Slovenia
National Institute of Mental Health Klecany 250 67 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009288
- 003
- CZ-PrNML
- 005
- 20250429134545.0
- 007
- ta
- 008
- 250415e20250305xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compbiomed.2025.109888 $2 doi
- 035 __
- $a (PubMed)40048899
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kukrál, Martin $u Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen, 301 00, Czech Republic. Electronic address: kukrma@students.zcu.cz
- 245 10
- $a Near-lossless EEG signal compression using a convolutional autoencoder: Case study for 256-channel binocular rivalry dataset / $c M. Kukrál, DT. Pham, J. Kohout, Š. Kohek, M. Havlík, D. Grygarová
- 520 9_
- $a Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a elektroencefalografie $x metody $7 D004569
- 650 12
- $a komprese dat $x metody $7 D044962
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a ženské pohlaví $7 D005260
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pham, Duc Thien $u Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen, 301 00, Czech Republic. Electronic address: ducthien@kiv.zcu.cz
- 700 1_
- $a Kohout, Josef $u Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen, 301 00, Czech Republic. Electronic address: besoft@ntis.zcu.cz
- 700 1_
- $a Kohek, Štefan $u Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, 2000, Slovenia. Electronic address: stefan.kohek@um.si
- 700 1_
- $a Havlík, Marek $u National Institute of Mental Health, Klecany, 250 67, Czech Republic. Electronic address: marek.havlik@nudz.cz
- 700 1_
- $a Grygarová, Dominika $u National Institute of Mental Health, Klecany, 250 67, Czech Republic. Electronic address: dominika.grygarova@nudz.cz
- 773 0_
- $w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 189 (20250305), s. 109888
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40048899 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429134541 $b ABA008
- 999 __
- $a ok $b bmc $g 2310955 $s 1246369
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 189 $c - $d 109888 $e 20250305 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
- LZP __
- $a Pubmed-20250415