Pathologies affect the performance of ECG signals compression
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34006955
PubMed Central
PMC8131635
DOI
10.1038/s41598-021-89817-w
PII: 10.1038/s41598-021-89817-w
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- elektrokardiografie metody MeSH
- fraktály MeSH
- komprese dat metody MeSH
- lidé MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The performance of ECG signals compression is influenced by many things. However, there is not a single study primarily focused on the possible effects of ECG pathologies on the performance of compression algorithms. This study evaluates whether the pathologies present in ECG signals affect the efficiency and quality of compression. Single-cycle fractal-based compression algorithm and compression algorithm based on combination of wavelet transform and set partitioning in hierarchical trees are used to compress 125 15-leads ECG signals from CSE database. Rhythm and morphology of these signals are newly annotated as physiological or pathological. The compression performance results are statistically evaluated. Using both compression algorithms, physiological signals are compressed with better quality than pathological signals according to 8 and 9 out of 12 quality metrics, respectively. Moreover, it was statistically proven that pathological signals were compressed with lower efficiency than physiological signals. Signals with physiological rhythm and physiological morphology were compressed with the best quality. The worst results reported the group of signals with pathological rhythm and pathological morphology. This study is the first one which deals with effects of ECG pathologies on the performance of compression algorithms. Signal-by-signal rhythm and morphology annotations (physiological/pathological) for the CSE database are newly published.
Zobrazit více v PubMed
Bayés de Luna A. Clinical Electrocardiography. 4. Wiley-Blackwell; 2010.
Zhang O, Frick K. All-ECG: A least-number of leads ECG monitor for standard 12-lead ECG tracking during motion∗. Proc. IEEE Healthc. Innov. Point Care Technol. 2019;20:103–106.
Giada F, Raviele A. Clinical approach to patients with palpitations. Card. Electrophysiol. Clin. 2018;10:387–396. doi: 10.1016/j.ccep.2018.02.010. PubMed DOI
Thaler MS. The Only EKG Book You'll Ever Need. 5. Lippincott Williams & Wilkins; 2007.
Alesanco A, Garcia J. Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Trans. Biomed. Eng. 2008;55:2519–2527. doi: 10.1109/TBME.2008.2001263. PubMed DOI
Elgendi M, Al-Ali A, Mohamed A, Ward R. Improving remote health monitoring: A low-complexity ECG compression approach. Diagnostics (Basel) 2018;8:1–17. PubMed PMC
Manikandan MS, Dandapat S. Wavelet-based electrocardiogram signal compression methods and their performances: A prospective review. Biomed. Signal Process. Control. 2014;14:73–107. doi: 10.1016/j.bspc.2014.07.002. DOI
Craven D, McGinley B, Kilmartin L, Glavin M, Jones E. Impact of compressed sensing on clinically relevant metrics for ambulatory ECG monitoring. Electron. Lett. 2015;51:323–324. doi: 10.1049/el.2014.4188. DOI
Lee S, Kim J, Lee M. A real-time ECG data compression and transmission algorithm for an e-Health device. IEEE Trans. Biomed. Eng. 2011;58:2448–2455. doi: 10.1109/TBME.2011.2156794. PubMed DOI
Nemcova A, Smisek R, Marsanova L, Smital L, Vitek M. A comparative analysis of methods for evaluation of ECG signal quality after compression. Biomed. Res. Int. 2018;2018:Art. no. 1868519. doi: 10.1155/2018/1868519. PubMed DOI PMC
Lu ZT, Kim DY, Pearlman WA. Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Trans. Biomed. Eng. 2000;47:849–856. doi: 10.1109/10.846678. PubMed DOI
Hrubes J, Vitek M, Kozumplik J. Possibilities of wavelet decomposition for SPIHT compression of ECG signals. Anal. Biomed. Signals Images. 2008;20:451–454.
Balestrieri E, De Vito L, Picariello F, Tudosa I. A novel method for compressed sensing based sampling of ECG signals in medical-IoT era. Proc. IEEE Int. Symp. Med. Meas. Appl. 2019;20:20.
Fira CM, Goras L. An ECG signals compression method and its validation using NNs. IEEE Trans. Biomed. Eng. 2008;55:1319–1326. doi: 10.1109/TBME.2008.918465. PubMed DOI
Rakshit M, Das S. Electrocardiogram beat type dictionary based compressed sensing for telecardiology application. Biomed. Signal Process. Control. 2019;47:207–218. doi: 10.1016/j.bspc.2018.08.016. DOI
Chen WS, Hsieh L, Yuan SY. High performance data compression method with pattern matching for biomedical ECG and arterial pulse waveforms. Comput. Methods Programs Biomed. 2004;74:11–27. doi: 10.1016/S0169-2607(03)00022-1. PubMed DOI
Chou HH, Chen YJ, Shiau YC, Kuo TS. An effective and efficient compression algorithm for ECG signals with irregular periods. IEEE Trans. Biomed. Eng. 2006;53:1198–1205. doi: 10.1109/TBME.2005.863961. PubMed DOI
Bera P, Gupta R, Saha J. Preserving abnormal beat morphology in long-term ECG recording: An efficient hybrid compression approach. IEEE Trans. Instrum. Meas. 2020;69:2084–2092. doi: 10.1109/TIM.2019.2922054. DOI
Ibaida A, Al-Shammary D, Khalil I. Cloud enabled fractal based ECG compression in wireless body sensor networks. Futur. Gener. Comput. Syst. 2014;35:91–101. doi: 10.1016/j.future.2013.12.025. DOI
Nasimi F, Khayyambashi MR, Movahhedinia N. Exploiting similar prior knowledge for compressing ECG signals. Biomed. Signal. Process. Control. 2020;60:13. doi: 10.1016/j.bspc.2020.101960. DOI
Alesanco A, Garcia J. A simple method for guaranteeing ECG quality in real-time wavelet lossy coding. EURASIP J. Adv. Signal Process. 2007;2007:Art. No. 93195. doi: 10.1155/2007/93195. DOI
Goldberger AL, et al. PhysioBank, PhysioToolkit, and PhysioNet—components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–E220. PubMed
Moody GB, Mark RG, Goldberger AL. Evaluation of the 'TRIM' ECG data compressor. Proc. Comput. Cardiol. 1988;20:167–170.
Silveira RMR, Agulhari CM, Bonatti IS, Peres PLD. A genetic algorithm to compress electrocardiograms using parameterized wavelets. Proc. IEEE Int. Symp. Signal Process. Inform. Technol. 2007;20:402–440.
Rajarshi G, Biswas D. Health Monitoring Systems: An Enabling Technology for Patient Care. CRC Press; 2019.
Wang F, et al. A novel ECG signal compression method using spindle convolutional auto-encoder. Comput. Methods Prog. Biomed. 2019;175:139–150. doi: 10.1016/j.cmpb.2019.03.019. PubMed DOI
Hsieh J-H, Hung K-C, Liu J-H, Wu T-C. Wavelet-based quality-constrained ECG data compression system without decoding process. IEEE Multimed. 2020;27:33–45. doi: 10.1109/MMUL.2020.2983690. DOI
Jha CK, Kolekar MH. Diagnostic quality assured ECG signal compression with selection of appropriate mother wavelet for minimal distortion. IET Sci. Meas. Technol. 2019;13:589–598. doi: 10.1049/iet-smt.2018.5361. DOI
Nemcova A, Vitek M, Novakova M. Complex study on compression of ECG signals using novel single-cycle fractal-based algorithm and SPIHT. Sci. Rep. 2020;10:15. doi: 10.1038/s41598-020-72656-6. PubMed DOI PMC
Smisek R, et al. CSE database: Extended annotations and new recommendations for ECG software testing. Med. Biol. Eng. Comput. 2017;55:1473–1482. doi: 10.1007/s11517-016-1607-5. PubMed DOI
The CSE Working Party, Database: Common standards for quantitative electrocardiography [CD-ROM], 1990.
Mason JW, Hancock EW, Gettes LS. Recommendations for the standardization and interpretation of the electrocardiogram–Part II: Electrocardiography diagnostic statement list—a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society—endorsed by the International Society for Computerized Electrocardiology. Circulation. 2007;115:1325–1332. doi: 10.1161/CIRCULATIONAHA.106.180201. PubMed DOI
Said A, Pearlman WA. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. Video Technol. 1996;6:243–250. doi: 10.1109/76.499834. DOI
Nemcova A, Vitek M, Marsanova L, Smisek R, Smital L. Assessment of ECG signal quality after compression. Proc. IUPESM World Congr. Med. Phys. Biomed. Eng. 2019;20:169–173.