• Je něco špatně v tomto záznamu ?

Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context

T. Králová, T. Albrecht, J. Bryja, D. Hořák, A. Johnsen, JT. Lifjeld, M. Novotný, O. Sedláček, H. Velová, M. Vinkler,

. 2018 ; 27 (13) : 2871-2883. [pub] 20180606

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028422

Positive selection acting on Toll-like receptors (TLRs) has been recently investigated to reveal evolutionary mechanisms of host-pathogen molecular co-adaptation. Much of this research, however, has focused mainly on the identification of sites predicted to be under positive selection, bringing little insight into the functional differences and similarities among species and a limited understanding of convergent evolution in the innate immune molecules. In this study, we provide evidence of phenotypic variability in the avian TLR4 ligand-binding region (LBR), the direct interface between host and pathogen molecular structures. We show that 55 passerine species vary substantially in the distribution of electrostatic potential on the surface of the receptor, and based on these distinct patterns, we identified four species clusters. Seven of the 34 evolutionarily nonconservative and positively selected residues correspond topologically to sites previously identified as being important for lipopolysaccharide, lipid IVa or MD-2 binding. Five of these positions codetermine the identity of the charge clusters. Groups of species that host-related communities of pathogens were predicted to cluster based on their TLR4 LBR charge. Despite some evidence for convergence among taxa, there were no clear associations between the TLR4 LBR charge distribution and any of the general ecological characteristics compared (migration, latitudinal distribution and diet). Closely related species, however, mostly belonged to the same surface charge cluster indicating that phylogenetic constraints are key determinants shaping TLR4 adaptive evolution. Our results suggest that host innate immune evolution is consistent with Fahrenholz's rule on the cospeciation of hosts and their parasites.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028422
003      
CZ-PrNML
005      
20190823102540.0
007      
ta
008      
190813s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/mec.14724 $2 doi
035    __
$a (PubMed)29772096
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Králová, Tereza $u Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic. Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
245    10
$a Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context / $c T. Králová, T. Albrecht, J. Bryja, D. Hořák, A. Johnsen, JT. Lifjeld, M. Novotný, O. Sedláček, H. Velová, M. Vinkler,
520    9_
$a Positive selection acting on Toll-like receptors (TLRs) has been recently investigated to reveal evolutionary mechanisms of host-pathogen molecular co-adaptation. Much of this research, however, has focused mainly on the identification of sites predicted to be under positive selection, bringing little insight into the functional differences and similarities among species and a limited understanding of convergent evolution in the innate immune molecules. In this study, we provide evidence of phenotypic variability in the avian TLR4 ligand-binding region (LBR), the direct interface between host and pathogen molecular structures. We show that 55 passerine species vary substantially in the distribution of electrostatic potential on the surface of the receptor, and based on these distinct patterns, we identified four species clusters. Seven of the 34 evolutionarily nonconservative and positively selected residues correspond topologically to sites previously identified as being important for lipopolysaccharide, lipid IVa or MD-2 binding. Five of these positions codetermine the identity of the charge clusters. Groups of species that host-related communities of pathogens were predicted to cluster based on their TLR4 LBR charge. Despite some evidence for convergence among taxa, there were no clear associations between the TLR4 LBR charge distribution and any of the general ecological characteristics compared (migration, latitudinal distribution and diet). Closely related species, however, mostly belonged to the same surface charge cluster indicating that phylogenetic constraints are key determinants shaping TLR4 adaptive evolution. Our results suggest that host innate immune evolution is consistent with Fahrenholz's rule on the cospeciation of hosts and their parasites.
650    _2
$a zvířata $7 D000818
650    _2
$a ptáci $x genetika $x parazitologie $7 D001717
650    12
$a molekulární evoluce $7 D019143
650    _2
$a glykolipidy $x chemie $x genetika $7 D006017
650    _2
$a interakce hostitele a patogenu $x genetika $7 D054884
650    _2
$a přirozená imunita $x genetika $7 D007113
650    _2
$a ligandy $7 D008024
650    _2
$a lipid A $x analogy a deriváty $x chemie $x genetika $7 D008050
650    _2
$a lipopolysacharidy $x chemie $x genetika $7 D008070
650    _2
$a lymfocytární antigen 96 $x chemie $x genetika $7 D051218
650    _2
$a mikrobiota $x genetika $7 D064307
650    _2
$a molekulární modely $7 D008958
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů $7 D011487
650    12
$a selekce (genetika) $x genetika $7 D012641
650    _2
$a sekvenční analýza DNA $7 D017422
650    _2
$a statická elektřina $7 D055672
650    _2
$a toll-like receptor 4 $x chemie $x genetika $7 D051197
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Albrecht, Tomáš $u Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic. Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Bryja, Josef $u Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic. Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Hořák, David $u Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Johnsen, Arild $u Natural History Museum, University of Oslo, Oslo, Norway.
700    1_
$a Lifjeld, Jan T $u Natural History Museum, University of Oslo, Oslo, Norway.
700    1_
$a Novotný, Marian $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Sedláček, Ondřej $u Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Velová, Hana $u Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Vinkler, Michal $u Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
773    0_
$w MED00006323 $t Molecular ecology $x 1365-294X $g Roč. 27, č. 13 (2018), s. 2871-2883
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29772096 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190823102754 $b ABA008
999    __
$a ok $b bmc $g 1433571 $s 1066882
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 27 $c 13 $d 2871-2883 $e 20180606 $i 1365-294X $m Molecular ecology $n Mol Ecol $x MED00006323
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...