-
Je něco špatně v tomto záznamu ?
Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration
M. Rampichová, E. Košt'áková Kuželová, E. Filová, J. Chvojka, J. Šafka, M. Pelcl, J. Daňková, E. Prosecká, M. Buzgo, M. Plencner, D. Lukáš, E. Amler,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV16-29680A
MZ0
CEP - Centrální evidence projektů
NV16-29680A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Plný text - Článek
NLK
Free Medical Journals
od 2008 do Před 1 rokem
PubMed Central
od 2007
Europe PubMed Central
od 2007 do Před 1 rokem
Taylor & Francis Open Access
od 2007-01-01
Medline Complete (EBSCOhost)
od 2011-01-01
- MeSH
- 3D tisk * MeSH
- buněčná adheze fyziologie MeSH
- buněčná diferenciace fyziologie MeSH
- chondrocyty cytologie MeSH
- kultivované buňky fyziologie MeSH
- lidé MeSH
- nanovlákna * chemie MeSH
- proliferace buněk fyziologie MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Additive manufacturing, also called 3D printing, is an effective method for preparing scaffolds with defined structure and porosity. The disadvantage of the technique is the excessive smoothness of the printed fibers, which does not support cell adhesion. In the present study, a 3D printed scaffold was combined with electrospun classic or structured nanofibers to promote cell adhesion. Structured nanofibers were used to improve the infiltration of cells into the scaffold. Electrospun layers were connected to 3D printed fibers by gluing, thus enabling the fabrication of scaffolds with unlimited thickness. The composite 3D printed/nanofibrous scaffolds were seeded with primary chondrocytes and tested in vitro for cell adhesion, proliferation and differentiation. The experiment showed excellent cell infiltration, viability, and good cell proliferation. On the other hand, partial chondrocyte dedifferentiation was shown. Other materials supporting chondrogenic differentiation will be investigated in future studies.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028696
- 003
- CZ-PrNML
- 005
- 20201029100929.0
- 007
- ta
- 008
- 190813s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1080/19336918.2017.1385713 $2 doi
- 035 __
- $a (PubMed)29130836
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Rampichová, M $u a University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague , Buštěhrad , Czech Republic. b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.
- 245 10
- $a Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration / $c M. Rampichová, E. Košt'áková Kuželová, E. Filová, J. Chvojka, J. Šafka, M. Pelcl, J. Daňková, E. Prosecká, M. Buzgo, M. Plencner, D. Lukáš, E. Amler,
- 520 9_
- $a Additive manufacturing, also called 3D printing, is an effective method for preparing scaffolds with defined structure and porosity. The disadvantage of the technique is the excessive smoothness of the printed fibers, which does not support cell adhesion. In the present study, a 3D printed scaffold was combined with electrospun classic or structured nanofibers to promote cell adhesion. Structured nanofibers were used to improve the infiltration of cells into the scaffold. Electrospun layers were connected to 3D printed fibers by gluing, thus enabling the fabrication of scaffolds with unlimited thickness. The composite 3D printed/nanofibrous scaffolds were seeded with primary chondrocytes and tested in vitro for cell adhesion, proliferation and differentiation. The experiment showed excellent cell infiltration, viability, and good cell proliferation. On the other hand, partial chondrocyte dedifferentiation was shown. Other materials supporting chondrogenic differentiation will be investigated in future studies.
- 650 _2
- $a buněčná adheze $x fyziologie $7 D002448
- 650 _2
- $a buněčná diferenciace $x fyziologie $7 D002454
- 650 _2
- $a proliferace buněk $x fyziologie $7 D049109
- 650 _2
- $a kultivované buňky $x fyziologie $7 D002478
- 650 _2
- $a chondrocyty $x cytologie $7 D019902
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a nanovlákna $x chemie $7 D057139
- 650 12
- $a 3D tisk $7 D066330
- 650 _2
- $a tkáňové inženýrství $x metody $7 D023822
- 650 12
- $a tkáňové podpůrné struktury $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Košt'áková Kuželová, E $u c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic.
- 700 1_
- $a Filová, E $u b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.
- 700 1_
- $a Chvojka, J $u c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic.
- 700 1_
- $a Šafka, J $u d Technical University of Liberec , Department of Manufacturing Systems and Automatization , Liberec , Czech Republic.
- 700 1_
- $a Pelcl, M $u c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic.
- 700 1_
- $a Daňková, J $u b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.
- 700 1_
- $a Prosecká, E $u b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.
- 700 1_
- $a Buzgo, M $u a University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague , Buštěhrad , Czech Republic.
- 700 1_
- $a Plencner, M $u b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.
- 700 1_
- $a Lukáš, David, $d 1958- $7 xx0000188 $u Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic.
- 700 1_
- $a Amler, E $u a University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague , Buštěhrad , Czech Republic. b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.
- 773 0_
- $w MED00173230 $t Cell adhesion & migration $x 1933-6926 $g Roč. 12, č. 3 (2018), s. 271-285
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29130836 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20201029100859 $b ABA008
- 999 __
- $a ok $b bmc $g 1433845 $s 1067156
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 12 $c 3 $d 271-285 $e 20171113 $i 1933-6926 $m Cell adhesion & migration $n Cell Adh Migr $x MED00173230
- GRA __
- $a NV16-28637A $a NV16-29680A $p MZ0 $p MZ0
- GRA __
- $a NV16-28637A $a NV16-29680A $p MZ0 $p MZ0
- LZP __
- $a Pubmed-20190813