• Je něco špatně v tomto záznamu ?

Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation

JL. Robertson, BT. Cox, J. Jaros, BE. Treeby,

. 2017 ; 141 (3) : 1726. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028798

Non-invasive, focal neurostimulation with ultrasound is a potentially powerful neuroscientific tool that requires effective transcranial focusing of ultrasound to develop. Time-reversal (TR) focusing using numerical simulations of transcranial ultrasound propagation can correct for the effect of the skull, but relies on accurate simulations. Here, focusing requirements for ultrasonic neurostimulation are established through a review of previously employed ultrasonic parameters, and consideration of deep brain targets. The specific limitations of finite-difference time domain (FDTD) and k-space corrected pseudospectral time domain (PSTD) schemes are tested numerically to establish the spatial points per wavelength and temporal points per period needed to achieve the desired accuracy while minimizing the computational burden. These criteria are confirmed through convergence testing of a fully simulated TR protocol using a virtual skull. The k-space PSTD scheme performed as well as, or better than, the widely used FDTD scheme across all individual error tests and in the convergence of large scale models, recommending it for use in simulated TR. Staircasing was shown to be the most serious source of error. Convergence testing indicated that higher sampling is required to achieve fine control of the pressure amplitude at the target than is needed for accurate spatial targeting.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028798
003      
CZ-PrNML
005      
20190819101042.0
007      
ta
008      
190813s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1121/1.4976339 $2 doi
035    __
$a (PubMed)28372121
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Robertson, James L B $u Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
245    10
$a Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation / $c JL. Robertson, BT. Cox, J. Jaros, BE. Treeby,
520    9_
$a Non-invasive, focal neurostimulation with ultrasound is a potentially powerful neuroscientific tool that requires effective transcranial focusing of ultrasound to develop. Time-reversal (TR) focusing using numerical simulations of transcranial ultrasound propagation can correct for the effect of the skull, but relies on accurate simulations. Here, focusing requirements for ultrasonic neurostimulation are established through a review of previously employed ultrasonic parameters, and consideration of deep brain targets. The specific limitations of finite-difference time domain (FDTD) and k-space corrected pseudospectral time domain (PSTD) schemes are tested numerically to establish the spatial points per wavelength and temporal points per period needed to achieve the desired accuracy while minimizing the computational burden. These criteria are confirmed through convergence testing of a fully simulated TR protocol using a virtual skull. The k-space PSTD scheme performed as well as, or better than, the widely used FDTD scheme across all individual error tests and in the convergence of large scale models, recommending it for use in simulated TR. Staircasing was shown to be the most serious source of error. Convergence testing indicated that higher sampling is required to achieve fine control of the pressure amplitude at the target than is needed for accurate spatial targeting.
650    12
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    12
$a teoretické modely $7 D008962
650    _2
$a pohyb těles $7 D009038
650    _2
$a numerická analýza pomocí počítače $7 D009716
650    _2
$a tlak $7 D011312
650    _2
$a časové faktory $7 D013997
650    _2
$a ultrazvuková terapie $x metody $7 D014464
650    12
$a ultrazvukové vlny $7 D000069453
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Cox, Ben T $u Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
700    1_
$a Jaros, J $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Treeby, Bradley E $u Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
773    0_
$w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 141, č. 3 (2017), s. 1726
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28372121 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190819101316 $b ABA008
999    __
$a ok $b bmc $g 1433947 $s 1067258
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 141 $c 3 $d 1726 $e - $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...