• Je něco špatně v tomto záznamu ?

Molecular cytogenetic characterisation of Elytrigia ×mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae)

L. Paštová, A. Belyayev, V. Mahelka,

. 2019 ; 19 (1) : 230. [pub] 20190531

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034531

Grantová podpora
RVO 67985939 Akademie Věd České Republiky
17-06548S Grantová Agentura České Republiky
SVV 260439 Univerzita Karlova v Praze

BACKGROUND: Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS: The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS: The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034531
003      
CZ-PrNML
005      
20191010123255.0
007      
ta
008      
191007s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12870-019-1806-y $2 doi
035    __
$a (PubMed)31151385
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Paštová, Ladislava $u Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic. ladislava.pastova@ibot.cas.cz. Department of Botany, Charles University, Benátská 2, 128 01, Prague, Czech Republic. ladislava.pastova@ibot.cas.cz.
245    10
$a Molecular cytogenetic characterisation of Elytrigia ×mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae) / $c L. Paštová, A. Belyayev, V. Mahelka,
520    9_
$a BACKGROUND: Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS: The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS: The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.
650    _2
$a cytogenetické vyšetření $7 D020732
650    _2
$a DNA rostlinná $x analýza $7 D018744
650    12
$a genotyp $7 D005838
650    12
$a hybridizace genetická $7 D006824
650    _2
$a hybridizace in situ $7 D017403
650    _2
$a hybridizace in situ fluorescenční $7 D017404
650    _2
$a lipnicovité $x genetika $7 D006109
650    12
$a polyploidie $7 D011123
650    _2
$a RNA ribozomální 18S $x analýza $7 D012337
650    _2
$a RNA ribozomální 5S $x analýza $7 D012341
651    _2
$a Česká republika $7 D018153
655    _2
$a časopisecké články $7 D016428
700    1_
$a Belyayev, Alexander $u Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
700    1_
$a Mahelka, Václav $u Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
773    0_
$w MED00006798 $t BMC plant biology $x 1471-2229 $g Roč. 19, č. 1 (2019), s. 230
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31151385 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191010123713 $b ABA008
999    __
$a ok $b bmc $g 1451191 $s 1073081
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 19 $c 1 $d 230 $e 20190531 $i 1471-2229 $m Bmc plant biology $n BMC Plant Biol $x MED00006798
GRA    __
$a RVO 67985939 $p Akademie Věd České Republiky
GRA    __
$a 17-06548S $p Grantová Agentura České Republiky
GRA    __
$a SVV 260439 $p Univerzita Karlova v Praze
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...