-
Something wrong with this record ?
Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut
VN. Rocha Martin, C. Lacroix, J. Killer, V. Bunesova, E. Voney, C. Braegger, C. Schwab,
Language English Country Germany
Document type Journal Article
- MeSH
- Genes, Bacterial genetics MeSH
- Bifidobacterium bifidum growth & development metabolism MeSH
- Bifidobacterium longum subspecies infantis growth & development metabolism MeSH
- Feces microbiology MeSH
- Phylogeny MeSH
- Adaptation, Physiological * MeSH
- Genetic Variation MeSH
- Genome, Bacterial genetics MeSH
- Infant MeSH
- Humans MeSH
- Milk, Human metabolism MeSH
- Microbial Interactions MeSH
- Polysaccharides metabolism MeSH
- Propionates metabolism MeSH
- Propionibacteriaceae classification genetics growth & development metabolism MeSH
- Sequence Analysis, DNA MeSH
- Gastrointestinal Microbiome * genetics MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and β-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.
Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034544
- 003
- CZ-PrNML
- 005
- 20191015115712.0
- 007
- ta
- 008
- 191007s2019 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.syapm.2019.05.001 $2 doi
- 035 __
- $a (PubMed)31128887
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Rocha Martin, Vanesa Natalin $u Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland; Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland.
- 245 10
- $a Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut / $c VN. Rocha Martin, C. Lacroix, J. Killer, V. Bunesova, E. Voney, C. Braegger, C. Schwab,
- 520 9_
- $a The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and β-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.
- 650 12
- $a fyziologická adaptace $7 D000222
- 650 _2
- $a Bifidobacterium bifidum $x růst a vývoj $x metabolismus $7 D000069985
- 650 _2
- $a Bifidobacterium longum subsp. infantis $x růst a vývoj $x metabolismus $7 D000070236
- 650 _2
- $a feces $x mikrobiologie $7 D005243
- 650 12
- $a střevní mikroflóra $x genetika $7 D000069196
- 650 _2
- $a bakteriální geny $x genetika $7 D005798
- 650 _2
- $a genetická variace $7 D014644
- 650 _2
- $a genom bakteriální $x genetika $7 D016680
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kojenec $7 D007223
- 650 _2
- $a mikrobiální interakce $7 D056265
- 650 _2
- $a mateřské mléko $x metabolismus $7 D008895
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a polysacharidy $x metabolismus $7 D011134
- 650 _2
- $a propionáty $x metabolismus $7 D011422
- 650 _2
- $a Propionibacteriaceae $x klasifikace $x genetika $x růst a vývoj $x metabolismus $7 D011423
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Lacroix, Christophe $u Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.
- 700 1_
- $a Killer, Jiri $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Czech Republic.
- 700 1_
- $a Bunesova, Vera $u Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol 165 00, Czech Republic.
- 700 1_
- $a Voney, Evelyn $u Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.
- 700 1_
- $a Braegger, Christian $u Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland.
- 700 1_
- $a Schwab, Clarissa $u Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland. Electronic address: clarissa.schwab@hest.ethz.ch.
- 773 0_
- $w MED00004831 $t Systematic and applied microbiology $x 1618-0984 $g Roč. 42, č. 4 (2019), s. 506-516
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31128887 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191015120138 $b ABA008
- 999 __
- $a ok $b bmc $g 1451204 $s 1073094
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 42 $c 4 $d 506-516 $e 20190516 $i 1618-0984 $m Systematic and applied microbiology $n Syst Appl Microbiol $x MED00004831
- LZP __
- $a Pubmed-20191007