• Je něco špatně v tomto záznamu ?

Subrecursive neural networks

J. Šíma,

. 2019 ; 116 (-) : 208-223. [pub] 20190520

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034548

It has been known for discrete-time recurrent neural networks (NNs) that binary-state models using the Heaviside activation function (with Boolean outputs 0 or 1) are equivalent to finite automata (level 3 in the Chomsky hierarchy), while analog-state NNs with rational weights, employing the saturated-linear function (with real-number outputs in the interval [0,1]), are Turing complete (Chomsky level 0) even for three analog units. However, it is as yet unknown whether there exist subrecursive (i.e. sub-Turing) NN models which occur on Chomsky levels 1 or 2. In this paper, we provide such a model which is a binary-state NN extended with one extra analog unit (1ANN). We achieve a syntactic characterization of languages that are accepted online by 1ANNs in terms of so-called cut languages which are combined in a certain way by usual operations. We employ this characterization for proving that languages accepted by 1ANNs with rational weights are context-sensitive (Chomsky level 1) and we present explicit examples of such languages that are not context-free (i.e. are above Chomsky level 2). In addition, we formulate a sufficient condition when a 1ANN recognizes a regular language (Chomsky level 3) in terms of quasi-periodicity of parameters derived from its real weights, which is satisfied e.g. for rational weights provided that the inverse of the real self-loop weight of the analog unit is a Pisot number.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034548
003      
CZ-PrNML
005      
20191017085004.0
007      
ta
008      
191007s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2019.04.019 $2 doi
035    __
$a (PubMed)31121419
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Šíma, Jiří $u Institute of Computer Science of the Czech Academy of Sciences, P.O. Box 5, 18207 Prague 8, Czech Republic. Electronic address: sima@cs.cas.cz.
245    10
$a Subrecursive neural networks / $c J. Šíma,
520    9_
$a It has been known for discrete-time recurrent neural networks (NNs) that binary-state models using the Heaviside activation function (with Boolean outputs 0 or 1) are equivalent to finite automata (level 3 in the Chomsky hierarchy), while analog-state NNs with rational weights, employing the saturated-linear function (with real-number outputs in the interval [0,1]), are Turing complete (Chomsky level 0) even for three analog units. However, it is as yet unknown whether there exist subrecursive (i.e. sub-Turing) NN models which occur on Chomsky levels 1 or 2. In this paper, we provide such a model which is a binary-state NN extended with one extra analog unit (1ANN). We achieve a syntactic characterization of languages that are accepted online by 1ANNs in terms of so-called cut languages which are combined in a certain way by usual operations. We employ this characterization for proving that languages accepted by 1ANNs with rational weights are context-sensitive (Chomsky level 1) and we present explicit examples of such languages that are not context-free (i.e. are above Chomsky level 2). In addition, we formulate a sufficient condition when a 1ANN recognizes a regular language (Chomsky level 3) in terms of quasi-periodicity of parameters derived from its real weights, which is satisfied e.g. for rational weights provided that the inverse of the real self-loop weight of the analog unit is a Pisot number.
650    12
$a jazyk (prostředek komunikace) $7 D007802
650    12
$a teoretické modely $7 D008962
650    12
$a neuronové sítě $7 D016571
655    _2
$a časopisecké články $7 D016428
773    0_
$w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 116, č. - (2019), s. 208-223
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31121419 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191017085432 $b ABA008
999    __
$a ok $b bmc $g 1451208 $s 1073098
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 116 $c - $d 208-223 $e 20190520 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...