• Je něco špatně v tomto záznamu ?

gazeNet: End-to-end eye-movement event detection with deep neural networks

R. Zemblys, DC. Niehorster, K. Holmqvist,

. 2019 ; 51 (2) : 840-864. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034959

Existing event detection algorithms for eye-movement data almost exclusively rely on thresholding one or more hand-crafted signal features, each computed from the stream of raw gaze data. Moreover, this thresholding is largely left for the end user. Here we present and develop gazeNet, a new framework for creating event detectors that do not require hand-crafted signal features or signal thresholding. It employs an end-to-end deep learning approach, which takes raw eye-tracking data as input and classifies it into fixations, saccades and post-saccadic oscillations. Our method thereby challenges an established tacit assumption that hand-crafted features are necessary in the design of event detection algorithms. The downside of the deep learning approach is that a large amount of training data is required. We therefore first develop a method to augment hand-coded data, so that we can strongly enlarge the data set used for training, minimizing the time spent on manual coding. Using this extended hand-coded data, we train a neural network that produces eye-movement event classification from raw eye-movement data without requiring any predefined feature extraction or post-processing steps. The resulting classification performance is at the level of expert human coders. Moreover, an evaluation of gazeNet on two other datasets showed that gazeNet generalized to data from different eye trackers and consistently outperformed several other event detection algorithms that we tested.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034959
003      
CZ-PrNML
005      
20191011082737.0
007      
ta
008      
191007s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.3758/s13428-018-1133-5 $2 doi
035    __
$a (PubMed)30334148
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zemblys, Raimondas $u Research Institute, Siauliai University, Šiauliai, Lithuania. r.zemblys@tf.su.lt.
245    10
$a gazeNet: End-to-end eye-movement event detection with deep neural networks / $c R. Zemblys, DC. Niehorster, K. Holmqvist,
520    9_
$a Existing event detection algorithms for eye-movement data almost exclusively rely on thresholding one or more hand-crafted signal features, each computed from the stream of raw gaze data. Moreover, this thresholding is largely left for the end user. Here we present and develop gazeNet, a new framework for creating event detectors that do not require hand-crafted signal features or signal thresholding. It employs an end-to-end deep learning approach, which takes raw eye-tracking data as input and classifies it into fixations, saccades and post-saccadic oscillations. Our method thereby challenges an established tacit assumption that hand-crafted features are necessary in the design of event detection algorithms. The downside of the deep learning approach is that a large amount of training data is required. We therefore first develop a method to augment hand-coded data, so that we can strongly enlarge the data set used for training, minimizing the time spent on manual coding. Using this extended hand-coded data, we train a neural network that produces eye-movement event classification from raw eye-movement data without requiring any predefined feature extraction or post-processing steps. The resulting classification performance is at the level of expert human coders. Moreover, an evaluation of gazeNet on two other datasets showed that gazeNet generalized to data from different eye trackers and consistently outperformed several other event detection algorithms that we tested.
650    _2
$a algoritmy $7 D000465
650    _2
$a behaviorální výzkum $x metody $7 D035841
650    12
$a pohyby očí $7 D005133
650    _2
$a lidé $7 D006801
650    12
$a neuronové sítě (počítačové) $7 D016571
650    _2
$a sakadické oční pohyby $7 D012438
650    _2
$a plnění a analýza úkolů $7 D013647
655    _2
$a časopisecké články $7 D016428
700    1_
$a Niehorster, Diederick C $u Humanities Laboratory and Department of Psychology, Lund University, Lund, Sweden.
700    1_
$a Holmqvist, Kenneth $u Department of Psychology, Regensburg University, Regensburg, Germany. Department of Computer Science, University of the Free State, Bloemfontein, South Africa. Faculty of Arts, Masaryk University, Brno, Czech Republic.
773    0_
$w MED00008758 $t Behavior research methods $x 1554-3528 $g Roč. 51, č. 2 (2019), s. 840-864
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30334148 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011083157 $b ABA008
999    __
$a ok $b bmc $g 1451619 $s 1073509
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 51 $c 2 $d 840-864 $e - $i 1554-3528 $m Behavior research methods $n Behav Res Methods $x MED00008758
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...