-
Je něco špatně v tomto záznamu ?
gazeNet: End-to-end eye-movement event detection with deep neural networks
R. Zemblys, DC. Niehorster, K. Holmqvist,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2005
Medline Complete (EBSCOhost)
od 2011-06-01 do Před 1 rokem
- MeSH
- algoritmy MeSH
- behaviorální výzkum metody MeSH
- lidé MeSH
- neuronové sítě (počítačové) * MeSH
- plnění a analýza úkolů MeSH
- pohyby očí * MeSH
- sakadické oční pohyby MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Existing event detection algorithms for eye-movement data almost exclusively rely on thresholding one or more hand-crafted signal features, each computed from the stream of raw gaze data. Moreover, this thresholding is largely left for the end user. Here we present and develop gazeNet, a new framework for creating event detectors that do not require hand-crafted signal features or signal thresholding. It employs an end-to-end deep learning approach, which takes raw eye-tracking data as input and classifies it into fixations, saccades and post-saccadic oscillations. Our method thereby challenges an established tacit assumption that hand-crafted features are necessary in the design of event detection algorithms. The downside of the deep learning approach is that a large amount of training data is required. We therefore first develop a method to augment hand-coded data, so that we can strongly enlarge the data set used for training, minimizing the time spent on manual coding. Using this extended hand-coded data, we train a neural network that produces eye-movement event classification from raw eye-movement data without requiring any predefined feature extraction or post-processing steps. The resulting classification performance is at the level of expert human coders. Moreover, an evaluation of gazeNet on two other datasets showed that gazeNet generalized to data from different eye trackers and consistently outperformed several other event detection algorithms that we tested.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034959
- 003
- CZ-PrNML
- 005
- 20191011082737.0
- 007
- ta
- 008
- 191007s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3758/s13428-018-1133-5 $2 doi
- 035 __
- $a (PubMed)30334148
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zemblys, Raimondas $u Research Institute, Siauliai University, Šiauliai, Lithuania. r.zemblys@tf.su.lt.
- 245 10
- $a gazeNet: End-to-end eye-movement event detection with deep neural networks / $c R. Zemblys, DC. Niehorster, K. Holmqvist,
- 520 9_
- $a Existing event detection algorithms for eye-movement data almost exclusively rely on thresholding one or more hand-crafted signal features, each computed from the stream of raw gaze data. Moreover, this thresholding is largely left for the end user. Here we present and develop gazeNet, a new framework for creating event detectors that do not require hand-crafted signal features or signal thresholding. It employs an end-to-end deep learning approach, which takes raw eye-tracking data as input and classifies it into fixations, saccades and post-saccadic oscillations. Our method thereby challenges an established tacit assumption that hand-crafted features are necessary in the design of event detection algorithms. The downside of the deep learning approach is that a large amount of training data is required. We therefore first develop a method to augment hand-coded data, so that we can strongly enlarge the data set used for training, minimizing the time spent on manual coding. Using this extended hand-coded data, we train a neural network that produces eye-movement event classification from raw eye-movement data without requiring any predefined feature extraction or post-processing steps. The resulting classification performance is at the level of expert human coders. Moreover, an evaluation of gazeNet on two other datasets showed that gazeNet generalized to data from different eye trackers and consistently outperformed several other event detection algorithms that we tested.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a behaviorální výzkum $x metody $7 D035841
- 650 12
- $a pohyby očí $7 D005133
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a neuronové sítě (počítačové) $7 D016571
- 650 _2
- $a sakadické oční pohyby $7 D012438
- 650 _2
- $a plnění a analýza úkolů $7 D013647
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Niehorster, Diederick C $u Humanities Laboratory and Department of Psychology, Lund University, Lund, Sweden.
- 700 1_
- $a Holmqvist, Kenneth $u Department of Psychology, Regensburg University, Regensburg, Germany. Department of Computer Science, University of the Free State, Bloemfontein, South Africa. Faculty of Arts, Masaryk University, Brno, Czech Republic.
- 773 0_
- $w MED00008758 $t Behavior research methods $x 1554-3528 $g Roč. 51, č. 2 (2019), s. 840-864
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30334148 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191011083157 $b ABA008
- 999 __
- $a ok $b bmc $g 1451619 $s 1073509
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 51 $c 2 $d 840-864 $e - $i 1554-3528 $m Behavior research methods $n Behav Res Methods $x MED00008758
- LZP __
- $a Pubmed-20191007