-
Je něco špatně v tomto záznamu ?
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
P. Nejedly, J. Cimbalnik, P. Klimes, F. Plesinger, J. Halamek, V. Kremen, I. Viscor, BH. Brinkmann, M. Pail, M. Brazdil, G. Worrell, P. Jurak,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
16-33798A
AZV CR - International
LO1212
MEYS CR - International
LQ1605
MEYS CR - International
UH2-NS095495
NIH HHS - United States
R01-NS063039
NIH HHS - United States
P103/11/0933),
Grantová Agentura České Republiky - International
CZ.1.05/ 1.1.00/02.0123
European Regional Development Fund - International
NV16-33798A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
NLK
ProQuest Central
od 2003-03-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2003-03-01 do Před 1 rokem
Psychology Database (ProQuest)
od 2003-03-01 do Před 1 rokem
- MeSH
- artefakty * MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- mozek fyziologie MeSH
- neuronové sítě (počítačové) * MeSH
- retrospektivní studie MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
The Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035073
- 003
- CZ-PrNML
- 005
- 20210924104538.0
- 007
- ta
- 008
- 191007s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12021-018-9397-6 $2 doi
- 035 __
- $a (PubMed)30105544
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Nejedly, Petr $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. nejedly@isibrno.cz. The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic. nejedly@isibrno.cz. Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. nejedly@isibrno.cz.
- 245 10
- $a Intracerebral EEG Artifact Identification Using Convolutional Neural Networks / $c P. Nejedly, J. Cimbalnik, P. Klimes, F. Plesinger, J. Halamek, V. Kremen, I. Viscor, BH. Brinkmann, M. Pail, M. Brazdil, G. Worrell, P. Jurak,
- 520 9_
- $a Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
- 650 12
- $a artefakty $7 D016477
- 650 _2
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a strojové učení $7 D000069550
- 650 12
- $a neuronové sítě (počítačové) $7 D016571
- 650 _2
- $a retrospektivní studie $7 D012189
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cimbalnik, Jan $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- 700 1_
- $a Klimes, Petr $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 700 1_
- $a Plesinger, Filip $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 700 1_
- $a Halamek, Josef $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 700 1_
- $a Kremen, Vaclav $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- 700 1_
- $a Viscor, Ivo $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 700 1_
- $a Brinkmann, Benjamin H $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- 700 1_
- $a Pail, Martin $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic. $7 xx0264305
- 700 1_
- $a Brazdil, Milan $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic. CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Worrell, Gregory $u Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Rochester, MN, USA. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- 700 1_
- $a Jurak, Pavel $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 773 0_
- $w MED00200656 $t Neuroinformatics $x 1559-0089 $g Roč. 17, č. 2 (2019), s. 225-234
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30105544 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20210924104537 $b ABA008
- 999 __
- $a ok $b bmc $g 1451733 $s 1073623
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 17 $c 2 $d 225-234 $e - $i 1559-0089 $m Neuroinformatics $n Neuroinformatics $x MED00200656
- GRA __
- $a 16-33798A $p AZV CR $2 International
- GRA __
- $a LO1212 $p MEYS CR $2 International
- GRA __
- $a LQ1605 $p MEYS CR $2 International
- GRA __
- $a UH2-NS095495 $p NIH HHS $2 United States
- GRA __
- $a R01-NS063039 $p NIH HHS $2 United States
- GRA __
- $a P103/11/0933), $p Grantová Agentura České Republiky $2 International
- GRA __
- $a CZ.1.05/ 1.1.00/02.0123 $p European Regional Development Fund $2 International
- GRA __
- $a NV16-33798A $p MZ0
- LZP __
- $a Pubmed-20191007