• Je něco špatně v tomto záznamu ?

Hourly land-use regression models based on low-cost PM monitor data

M. Masiol, N. Zíková, DC. Chalupa, DQ. Rich, AR. Ferro, PK. Hopke,

. 2018 ; 167 (-) : 7-14. [pub] 20180704

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035127

Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035127
003      
CZ-PrNML
005      
20191011093245.0
007      
ta
008      
191007s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.envres.2018.06.052 $2 doi
035    __
$a (PubMed)30005199
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Masiol, Mauro $u Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA.
245    10
$a Hourly land-use regression models based on low-cost PM monitor data / $c M. Masiol, N. Zíková, DC. Chalupa, DQ. Rich, AR. Ferro, PK. Hopke,
520    9_
$a Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.
650    12
$a látky znečišťující vzduch $7 D000393
650    12
$a znečištění ovzduší $7 D000397
650    12
$a monitorování životního prostředí $x přístrojové vybavení $x metody $7 D004784
650    _2
$a teoretické modely $7 D008962
650    _2
$a pevné částice $7 D052638
650    _2
$a roční období $7 D012621
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zíková, Naděžda $u Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic.
700    1_
$a Chalupa, David C $u Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
700    1_
$a Rich, David Q $u Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
700    1_
$a Ferro, Andrea R $u Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA.
700    1_
$a Hopke, Philip K $u Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA. Electronic address: phopke@clarkson.edu.
773    0_
$w MED00001557 $t Environmental research $x 1096-0953 $g Roč. 167, č. - (2018), s. 7-14
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30005199 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011093705 $b ABA008
999    __
$a ok $b bmc $g 1451787 $s 1073677
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 167 $c - $d 7-14 $e 20180704 $i 1096-0953 $m Environmental research. Section A $n Environ Res $x MED00001557
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...