-
Je něco špatně v tomto záznamu ?
Hourly land-use regression models based on low-cost PM monitor data
M. Masiol, N. Zíková, DC. Chalupa, DQ. Rich, AR. Ferro, PK. Hopke,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- látky znečišťující vzduch * MeSH
- monitorování životního prostředí * přístrojové vybavení metody MeSH
- pevné částice MeSH
- roční období MeSH
- teoretické modely MeSH
- znečištění ovzduší * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.
Center for Air Resources Engineering and Science Clarkson University Potsdam NY USA
Department of Civil and Environmental Engineering Clarkson University Potsdam NY USA
Department of Environmental Medicine University of Rochester Medical Center Rochester NY USA
Department of Public Health Sciences University of Rochester Medical Center Rochester NY USA
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035127
- 003
- CZ-PrNML
- 005
- 20191011093245.0
- 007
- ta
- 008
- 191007s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.envres.2018.06.052 $2 doi
- 035 __
- $a (PubMed)30005199
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Masiol, Mauro $u Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA.
- 245 10
- $a Hourly land-use regression models based on low-cost PM monitor data / $c M. Masiol, N. Zíková, DC. Chalupa, DQ. Rich, AR. Ferro, PK. Hopke,
- 520 9_
- $a Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.
- 650 12
- $a látky znečišťující vzduch $7 D000393
- 650 12
- $a znečištění ovzduší $7 D000397
- 650 12
- $a monitorování životního prostředí $x přístrojové vybavení $x metody $7 D004784
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a pevné částice $7 D052638
- 650 _2
- $a roční období $7 D012621
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zíková, Naděžda $u Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic.
- 700 1_
- $a Chalupa, David C $u Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- 700 1_
- $a Rich, David Q $u Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
- 700 1_
- $a Ferro, Andrea R $u Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA.
- 700 1_
- $a Hopke, Philip K $u Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA. Electronic address: phopke@clarkson.edu.
- 773 0_
- $w MED00001557 $t Environmental research $x 1096-0953 $g Roč. 167, č. - (2018), s. 7-14
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30005199 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191011093705 $b ABA008
- 999 __
- $a ok $b bmc $g 1451787 $s 1073677
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 167 $c - $d 7-14 $e 20180704 $i 1096-0953 $m Environmental research. Section A $n Environ Res $x MED00001557
- LZP __
- $a Pubmed-20191007