Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Quadruplexes in 'Dicty': crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome

A. Guédin, LY. Lin, S. Armane, L. Lacroix, JL. Mergny, S. Thore, LA. Yatsunyk,

. 2018 ; 46 (10) : 5297-5307. [pub] 20180601

Language English Country England, Great Britain

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R15 CA208676 NCI NIH HHS - United States

Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035273
003      
CZ-PrNML
005      
20191008113001.0
007      
ta
008      
191007s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gky290 $2 doi
035    __
$a (PubMed)29718337
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Guédin, Aurore $u ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France.
245    10
$a Quadruplexes in 'Dicty': crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome / $c A. Guédin, LY. Lin, S. Armane, L. Lacroix, JL. Mergny, S. Thore, LA. Yatsunyk,
520    9_
$a Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.
650    _2
$a cirkulární dichroismus $7 D002942
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a Dictyostelium $x genetika $7 D004023
650    12
$a G-kvadruplexy $7 D054856
650    _2
$a genom $7 D016678
650    _2
$a molekulární modely $7 D008958
650    _2
$a mutace $7 D009154
650    _2
$a nukleární magnetická rezonance biomolekulární $7 D019906
650    12
$a konformace nukleové kyseliny $7 D009690
650    _2
$a promotorové oblasti (genetika) $7 D011401
650    _2
$a spektrofotometrie ultrafialová $7 D013056
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lin, Linda Yingqi $u Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA.
700    1_
$a Armane, Samir $u ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France.
700    1_
$a Lacroix, Laurent $u Inserm U1024, CNRS UMR 8197, IBENS, Paris, France.
700    1_
$a Mergny, Jean-Louis $u ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France. Institute of Biophysics of the CAS, v.v.i., Kraálovopolskaá 135, 612 65 Brno, Czech Republic.
700    1_
$a Thore, Stéphane $u ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France.
700    1_
$a Yatsunyk, Liliya A $u Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA.
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 46, č. 10 (2018), s. 5297-5307
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29718337 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191008113417 $b ABA008
999    __
$a ok $b bmc $g 1451933 $s 1073823
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 46 $c 10 $d 5297-5307 $e 20180601 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
GRA    __
$a R15 CA208676 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20191007

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...