Cardiac involvement (CI) in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG) is part of the multisystemic presentation contributing to high mortality rates. The most common cardiac manifestations are pericardial effusion, cardiomyopathy, and structural heart defects. A genotype-phenotype correlation with organ involvement has not yet been described. We analyzed clinical, biochemical, and molecular genetic data of 222 patients from eight European centers and characterized the natural course of patients with CI. Fifty-seven patients (45 children) presented with CI, of whom 24 died (median age 21 months, standard deviation 49.8). Pericardial effusion was the most frequent manifestation (55.4%), occurring mostly within the first 6 months of life. The most common pathogenic variants in patients with CI were p.(Arg141His) in 74%, followed by p.(Val231Met) in 36%, which is 3.5 times higher than in PMM2-CDG patients without CI (p < 0.0001). Twenty-one out of 36 patients with p.(Val231Met) had CI; among them, 15 died, compared to 33 out of 166 patients without p.(Val231Met) who had CI (p < 0.0001). Nine out of 33 patients died (p = 0.0015), indicating greater clinical severity. Furthermore, the p.(Val231Met) variant is predominant in Eastern Europe, suggesting a founder effect. Cardiac complications in PMM2-CDG patients are common and serious. The variant p.(Val231Met) profoundly influences the extent of CI and mortality rates. Therefore, we recommend cardiac surveillance be included in the follow-up protocols for PMM2-CDG.
- MeSH
- dítě MeSH
- fenotyp * MeSH
- fosfotransferasy (fosfomutasy) * genetika nedostatek MeSH
- genetické asociační studie MeSH
- kardiomyopatie genetika MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mutace MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- stupeň závažnosti nemoci MeSH
- vrozené poruchy glykosylace * genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Renal cell carcinoma (RCC) is a disease typified by anomalies in cell metabolism. The function of mitochondria, including subunits of mitochondrial respiratory complex II (CII), in particular SDHB, are often affected. Here we investigated the state and function of CII in RCC patients. METHODS: We evaluated tumour tissue as well as the adjacent healthy kidney tissue of 78 patients with RCC of different histotypes, focusing on their mitochondrial function. As clear cell RCC (ccRCC) is by far the most frequent histotype of RCC, we focused on these patients, which were grouped based on the pathological WHO/ISUP grading system to low- and high-grade patients, indicative of prognosis. We also evaluated mitochondrial function in organoids derived from tumour tissue of 7 patients. RESULTS: ccRCC tumours were characterized by mutated von Hippel-Lindau gene and high expression of carbonic anhydrase IX. We found low levels of mitochondrial DNA, protein and function, together with CII function in ccRCC tumour tissue, but not in other RCC types and non-tumour tissues. Mitochondrial content increased in high-grade tumours, while the function of CII remained low. Tumour organoids from ccRCC patients recapitulated molecular characteristics of RCC tissue. CONCLUSIONS: Our findings suggest that the state of CII, epitomized by its assembly and SDHB levels, deteriorates with the progressive severity of ccRCC. These observations hold the potential for stratification of patients with worse prognosis and may guide the exploration of targeted therapeutic interventions.
- MeSH
- antigeny nádorové MeSH
- dospělí MeSH
- karboanhydrasa IX metabolismus genetika MeSH
- karcinom z renálních buněk * patologie metabolismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie * metabolismus patologie genetika MeSH
- mutace MeSH
- nádorový supresorový protein VHL genetika metabolismus MeSH
- nádory ledvin * patologie metabolismus genetika MeSH
- respirační komplex II * metabolismus genetika MeSH
- senioři MeSH
- sukcinátdehydrogenasa genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
- MeSH
- Alexanderova nemoc * genetika patologie metabolismus MeSH
- astrocyty * metabolismus patologie MeSH
- buněčná diferenciace * fyziologie MeSH
- gliový fibrilární kyselý protein * metabolismus genetika MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- mutace MeSH
- nervové kmenové buňky metabolismus MeSH
- neurony metabolismus patologie MeSH
- organoidy metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Differences in survival according to the pTERT mutation subtypes (-124C > T, -146C > T, and tandem -138_139CC > TT) have been observed. The present study aimed to describe the clinical as the histopathological and molecular cutaneous melanoma features according to the presence of the three most prevalent pTERT mutation subtypes (-124C > T, -146C > T, and tandem -138_139CC > TT). A retrospective cross-sectional study including 684 patients was designed, and a Partial Least-Squares Discriminant Analysis (PLS-DA) was performed. After the PSL-DA, it was observed that the tandem -138_139CC > TT subtype differs from the other subtypes. The model demonstrated that the -124C > T and the -138_139 CC > TT subtypes were associated with fast-growing melanomas (OR 0.5, CI 0.29-0.86, p = .012) and with Breslow >2 mm (OR 0.6, CI 0.37-0.97, p = .037), compared to the -146C > T mutation. Finally, the -124C > T appeared to be more associated with the presence of TILs (non-brisk) than the -146C > T (OR 0.6, CI 0.40-1.01, p = .05). These findings confirmed that the -124C > T and the tandem -138_139 CC > TT subtypes are both highly associated with the presence of features of aggressiveness; however, only the -124C > T was highly associated with TILs. This difference could explain the worse survival rate associated with the tandem -138_139CC > TT mutations.
- MeSH
- lidé MeSH
- melanom * genetika patologie mortalita MeSH
- mutace MeSH
- nádory kůže genetika patologie mortalita MeSH
- promotorové oblasti (genetika) * genetika MeSH
- průřezové studie MeSH
- retrospektivní studie MeSH
- telomerasa * genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This is the second in a series of four papers updating the European Cystic Fibrosis Society (ECFS) standards for the care of people with CF. This paper focuses on establishing and maintaining health. The guidance is produced using an evidence-based framework and with wide stakeholder engagement, including people from the CF community. Authors provided a narrative description of their topic and statements, which were more directive. These statements were reviewed by a Delphi exercise, achieving good levels of agreement from a wide group for all statements. This guidance reinforces the importance of a multi-disciplinary CF team, but also describes developing models of care including virtual consultations. The framework for health is reinforced, including the need for a physically active lifestyle and the strict avoidance of all recreational inhalations, including e-cigarettes. Progress with cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy is reviewed, including emerging adverse events and advice for dose reduction and interruption. This paper contains guidance that is pertinent to all people with CF regardless of age and eligibility for and access to modulator therapy.
BACKGROUND: Ring 18 chromosome is a rare chromosomal aberration associated with a wide range of symptoms affecting all organ systems. One possible symptom associated with this condition is an orofacial cleft. However, to date, there are very few reported cases where the cleft has been surgically treated. CASE DESCRIPTION: In our case study, we present a female patient with Ring 18 chromosome who underwent cleft palate surgery at 14 months of age. Subsequently, a reoperation of the palate was necessary due to wound dehiscence. For the secondary reconstruction of the palate, the acellular dermal matrix (ADM) MatriDerm® was used to improve healing. The cleft palate surgery progressively improved her ability to take in food, allowing a transition from nasogastric tube feeding to oral intake. RESULTS: This is only the fourth reported case of a child with Ring 18 chromosome undergoing surgical correction of an orofacial cleft. Additionally, it is one of the first cases where an ADM MatriDerm® was used in the surgical correction of a cleft palate. In this study, we also present a comprehensive literature review, providing an overview of the various symptoms associated with this syndrome. CONCLUSION: Cleft palate surgery had a very positive effect on improving food intake in the patient with Ring 18 chromosome. The use of an acellular dermal matrix during the secondary cleft palate surgery led to improved healing and a good outcome.
- MeSH
- kojenec MeSH
- kruhové chromozomy * MeSH
- lidé MeSH
- lidské chromozomy, pár 18 genetika MeSH
- rozštěp patra * genetika chirurgie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- přehledy MeSH
BACKGROUND: MUC1 and UMOD pathogenic variants cause autosomal dominant tubulointerstitial kidney disease (ADTKD). MUC1 is expressed in kidney, nasal mucosa and respiratory tract, while UMOD is expressed only in kidney. Due to haplo-insufficiency ADTKD-MUC1 patients produce approximately 50% of normal mucin-1. METHODS: To determine whether decreased mucin-1 production was associated with an increased COVID-19 risk, we sent a survey to members of an ADTKD registry in September 2021, after the initial, severe wave of COVID-19. We linked results to previously obtained ADTKD genotype and plasma CA15-3 (mucin-1) levels and created a longitudinal registry of COVID-19 related deaths. RESULTS: Surveys were emailed to 637 individuals, with responses from 89 ADTKD-MUC1 and 132 ADTKD-UMOD individuals. 19/83 (23%) ADTKD-MUC1 survey respondents reported a prior COVID-19 infection vs. 14/125 (11%) ADTKD-UMOD respondents (odds ratio (OR) 2.35 (95%CI 1.60-3.11, P = 0.0260). Including additional familial cases reported from survey respondents, 10/41 (24%) ADTKD-MUC1 individuals died of COVID-19 vs. 1/30 (3%) with ADTKD-UMOD, with OR 9.21 (95%CI 1.22-69.32), P = 0.03. The mean plasma mucin-1 level prior to infection in 14 infected and 27 uninfected ADTKD-MUC1 individuals was 7.06 ± 4.12 vs. 10.21 ± 4.02 U/mL (P = 0.035). Over three years duration, our longitudinal registry identified 19 COVID-19 deaths in 360 ADTKD-MUC1 individuals (5%) vs. 3 deaths in 478 ADTKD-UMOD individuals (0.6%) (P = 0.0007). Multivariate logistic regression revealed the following odds ratios (95% confidence interval) for COVID-19 deaths: ADTKD-MUC1 8.4 (2.9-29.5), kidney transplant 5.5 (1.6-9.1), body mass index (kg/m2) 1.1 (1.0-1.2), age (y) 1.04 (1.0-1.1). CONCLUSIONS: Individuals with ADTKD-MUC1 are at an eight-fold increased risk of COVID-19 mortality vs. ADTKD-UMOD individuals. Haplo-insufficient production of mucin-1 may be responsible.
- MeSH
- COVID-19 * mortalita genetika MeSH
- dospělí MeSH
- intersticiální nefritida genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mucin 1 * krev MeSH
- mutace * MeSH
- registrace MeSH
- SARS-CoV-2 genetika MeSH
- senioři MeSH
- uromodulin MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
- MeSH
- lidé MeSH
- membránové glykoproteiny metabolismus genetika MeSH
- mutace MeSH
- myši MeSH
- transport proteinů * MeSH
- uromodulin * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
- MeSH
- dítě MeSH
- dospělí MeSH
- feochromocytom * genetika terapie diagnóza MeSH
- lidé MeSH
- nádory nadledvin * genetika terapie diagnóza MeSH
- paragangliom * genetika terapie MeSH
- sukcinátdehydrogenasa genetika MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
U nádorů gastrointestinálního traktu dnes vedle stanovení histologické diagnózy, grade a stage hraje zásadní roli rovněž tzv. prediktivní testování. To slouží zejména k identifikaci molekulárních cílů pro moderní onkologickou terapii. U karcinomů jícnu a žaludku je dnes standardem vyšetření exprese a amplifikace HER2, exprese proteinů mismatch repair (MMR) systému a vyšetření exprese PD-L1. U karcinomu žaludku se v blízké budoucnosti testování rozšíří o další markery, zejména exprese claudinu 18.2 či receptoru FGFR2a. U kolorektálního karcinomu je standardem prediktivního vyšetření stanovení mutací RAS (KRAS a NRAS), BRAF a dále zhodnocení mikrosatelitní instability, jen vzácně lze nalézt rovněž terapeuticky cílitelné genové fúze. U karcinomu pankreatu se lze setkat s případy deficience MMR, mutacemi BRCA1/2, zcela raritně lze identifikovat další cílitelné aberace. U nádorů žlučníku a žlučových cest hledáme zejména mutace IDH1 a IDH2, fúze a mutace genu FGFR2, amplifikace či mutace HER2, mutace BRAF či mutace BRCA1/2. Všechny výsledky by měly být projednány v rámci molekulárního tumor boardu.
In addition to the histological diagnosis, grade and stage, predictive testing plays a crucial role in gastrointestinal tumours today. This is mainly used to identify molecular targets for modern cancer therapy. In esophageal and gastric cancers, HER2 expression and amplification, mismatch repair (MMR) system protein deficiency and PD-L1 expression are tested routinely. In colorectal cancer, it is namely detection of RAS (KRAS and NRAS) and BRAF mutations, as well as the assessment of microsatellite instability; targetable gene fusions are found rarely only. In pancreatic cancer, cases of MMR deficiency, BRCA1/2 mutations and other targetable aberrations can be identified quite rarely. In gallbladder and biliary tract cancers, we are mainly looking for IDH1 and IDH2 mutations, FGFR2 gene fusions and mutations, HER2 amplifications or mutations, as well as mutations of BRAF or BRCA1/2. All results should be discussed within the molecular tumor board.
- MeSH
- diagnostické techniky molekulární MeSH
- gastrointestinální nádory * diagnóza genetika klasifikace MeSH
- genetické testování MeSH
- lidé MeSH
- mutace genetika MeSH
- nádorové biomarkery * genetika MeSH
- prediktivní hodnota testů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH