• Je něco špatně v tomto záznamu ?

Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair

K. Zaviskova, D. Tukmachev, J. Dubisova, I. Vackova, A. Hejcl, J. Bystronova, M. Pravda, I. Scigalkova, R. Sulakova, V. Velebny, L. Wolfova, S. Kubinova,

. 2018 ; 106 (4) : 1129-1140. [pub] 20180123

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035466

Hydrogel scaffolds which bridge the lesion, together with stem cell therapy represent a promising approach for spinal cord injury (SCI) repair. In this study, a hydroxyphenyl derivative of hyaluronic acid (HA-PH) was modified with the integrin-binding peptide arginine-glycine-aspartic acid (RGD), and enzymatically crosslinked to obtain a soft injectable hydrogel. Moreover, addition of fibrinogen was used to enhance proliferation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) on HA-PH-RGD hydrogel. The neuroregenerative potential of HA-PH-RGD hydrogel was evaluated in vivo in acute and subacute models of SCI. Both HA-PH-RGD hydrogel injection and implantation into the acute spinal cord hemisection cavity resulted in the same axonal and blood vessel density in the lesion area after 2 and 8 weeks. HA-PH-RGD hydrogel alone or combined with fibrinogen (HA-PH-RGD/F) and seeded with hWJ-MSCs was then injected into subacute SCI and evaluated after 8 weeks using behavioural, histological and gene expression analysis. A subacute injection of both HA-PH-RGD and HA-PH-RGD/F hydrogels similarly promoted axonal ingrowth into the lesion and this effect was further enhanced when the HA-PH-RGD/F was combined with hWJ-MSCs. On the other hand, no effect was found on locomotor recovery or the blood vessel ingrowth and density of glial scar around the lesion. In conclusion, we have developed and characterized injectable HA-PH-RGD based hydrogel, which represents a suitable material for further combinatorial therapies in neural tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1129-1140, 2018.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035466
003      
CZ-PrNML
005      
20191014110923.0
007      
ta
008      
191007s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jbm.a.36311 $2 doi
035    __
$a (PubMed)29266693
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zaviskova, Kristyna $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic. 2nd Medical Faculty, Charles University, Prague, Czech Republic.
245    10
$a Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair / $c K. Zaviskova, D. Tukmachev, J. Dubisova, I. Vackova, A. Hejcl, J. Bystronova, M. Pravda, I. Scigalkova, R. Sulakova, V. Velebny, L. Wolfova, S. Kubinova,
520    9_
$a Hydrogel scaffolds which bridge the lesion, together with stem cell therapy represent a promising approach for spinal cord injury (SCI) repair. In this study, a hydroxyphenyl derivative of hyaluronic acid (HA-PH) was modified with the integrin-binding peptide arginine-glycine-aspartic acid (RGD), and enzymatically crosslinked to obtain a soft injectable hydrogel. Moreover, addition of fibrinogen was used to enhance proliferation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) on HA-PH-RGD hydrogel. The neuroregenerative potential of HA-PH-RGD hydrogel was evaluated in vivo in acute and subacute models of SCI. Both HA-PH-RGD hydrogel injection and implantation into the acute spinal cord hemisection cavity resulted in the same axonal and blood vessel density in the lesion area after 2 and 8 weeks. HA-PH-RGD hydrogel alone or combined with fibrinogen (HA-PH-RGD/F) and seeded with hWJ-MSCs was then injected into subacute SCI and evaluated after 8 weeks using behavioural, histological and gene expression analysis. A subacute injection of both HA-PH-RGD and HA-PH-RGD/F hydrogels similarly promoted axonal ingrowth into the lesion and this effect was further enhanced when the HA-PH-RGD/F was combined with hWJ-MSCs. On the other hand, no effect was found on locomotor recovery or the blood vessel ingrowth and density of glial scar around the lesion. In conclusion, we have developed and characterized injectable HA-PH-RGD based hydrogel, which represents a suitable material for further combinatorial therapies in neural tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1129-1140, 2018.
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a kyselina hyaluronová $x chemie $7 D006820
650    _2
$a hydrogely $x chemie $7 D020100
650    12
$a injekce $7 D007267
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a mezenchymální kmenové buňky $x cytologie $x účinky léků $7 D059630
650    _2
$a pohybová aktivita $7 D009043
650    _2
$a oligopeptidy $x chemie $7 D009842
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
650    _2
$a potkani Wistar $7 D017208
650    _2
$a poranění míchy $x patologie $x patofyziologie $7 D013119
650    12
$a regenerace míchy $7 D058630
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
650    _2
$a Whartonův rosol $x cytologie $7 D059631
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Tukmachev, Dmitry $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic. 2nd Medical Faculty, Charles University, Prague, Czech Republic.
700    1_
$a Dubisova, Jana $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic. 2nd Medical Faculty, Charles University, Prague, Czech Republic.
700    1_
$a Vackova, Irena $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Hejcl, Ales $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Bystronova, Julie $u Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic.
700    1_
$a Pravda, Martin $u Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic.
700    1_
$a Scigalkova, Ivana $u Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic.
700    1_
$a Sulakova, Romana $u Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic.
700    1_
$a Velebny, Vladimir $u Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic.
700    1_
$a Wolfova, Lucie $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic. Department of Tissue Engineering, Contipro a.s., Dolni Dobrouc, Czech Republic.
700    1_
$a Kubinova, Sarka $u Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
773    0_
$w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 106, č. 4 (2018), s. 1129-1140
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29266693 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014111347 $b ABA008
999    __
$a ok $b bmc $g 1452126 $s 1074016
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 106 $c 4 $d 1129-1140 $e 20180123 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace