• Je něco špatně v tomto záznamu ?

How biomass growth mode affects ammonium oxidation start-up and NOB inhibition in the partial nitritation of cold and diluted reject water

V. Kouba, P. Svehla, M. Catrysse, L. Prochazkova, H. Radechovska, P. Jenicek, J. Bartacek,

. 2019 ; 40 (6) : 673-682. [pub] 20171121

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035522

The inhibition of undesirable nitrite oxidizing bacteria (NOB) and desirable ammonium oxidizing bacteria (AOB) by free ammonia (FA) and free nitrous acid (FNA) in partial nitritation (PN) is crucially affected by the biomass growth mode (suspended sludge, biofilm, encapsulation). But, the limitations of these modes towards less concentrated reject waters (≤600 mg-N L-1) are unclear. Therefore, this work compares the start-up and stability of three PN sequencing batch reactors (SBRs) with biomass grown in one of the three modes: suspended sludge, biofilm and biomass encapsulated in polyvinyl alcohol (PVA) pellets. The SBRs were operated at 15°C with influent total ammonium nitrogen (TAN) concentrations of 75-600 mg-TAN L-1. PN start-up was twice as fast in the biofilm and encapsulated biomass SBRs than in the suspended sludge SBR. After start-up, PN in the biofilm and suspended sludge SBRs was stable at 150-600 mg-TAN L-1. But, at 75 mg-TAN L-1, full nitrification gradually developed. In the encapsulated biomass SBR, full nitrification occurred even at 600 mg-TAN L-1, showing that NOB in this set-up can adapt even to 4.3 mg-FA L-1 and 0.27 mg-FNA L-1. Thus, PN in the biofilm was best for the treatment of an influent containing 150-600 mg-TAN L-1.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035522
003      
CZ-PrNML
005      
20191011093523.0
007      
ta
008      
191007s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1080/09593330.2017.1403491 $2 doi
035    __
$a (PubMed)29157140
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kouba, V $u a Department of Water Technology and Environmental Engineering, University of Chemistry and Technology , Prague , Czech Republic.
245    10
$a How biomass growth mode affects ammonium oxidation start-up and NOB inhibition in the partial nitritation of cold and diluted reject water / $c V. Kouba, P. Svehla, M. Catrysse, L. Prochazkova, H. Radechovska, P. Jenicek, J. Bartacek,
520    9_
$a The inhibition of undesirable nitrite oxidizing bacteria (NOB) and desirable ammonium oxidizing bacteria (AOB) by free ammonia (FA) and free nitrous acid (FNA) in partial nitritation (PN) is crucially affected by the biomass growth mode (suspended sludge, biofilm, encapsulation). But, the limitations of these modes towards less concentrated reject waters (≤600 mg-N L-1) are unclear. Therefore, this work compares the start-up and stability of three PN sequencing batch reactors (SBRs) with biomass grown in one of the three modes: suspended sludge, biofilm and biomass encapsulated in polyvinyl alcohol (PVA) pellets. The SBRs were operated at 15°C with influent total ammonium nitrogen (TAN) concentrations of 75-600 mg-TAN L-1. PN start-up was twice as fast in the biofilm and encapsulated biomass SBRs than in the suspended sludge SBR. After start-up, PN in the biofilm and suspended sludge SBRs was stable at 150-600 mg-TAN L-1. But, at 75 mg-TAN L-1, full nitrification gradually developed. In the encapsulated biomass SBR, full nitrification occurred even at 600 mg-TAN L-1, showing that NOB in this set-up can adapt even to 4.3 mg-FA L-1 and 0.27 mg-FNA L-1. Thus, PN in the biofilm was best for the treatment of an influent containing 150-600 mg-TAN L-1.
650    12
$a amoniové sloučeniny $7 D064751
650    _2
$a Bacteria $7 D001419
650    _2
$a biomasa $7 D018533
650    _2
$a bioreaktory $7 D019149
650    12
$a dusitany $7 D009573
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a odpadní vody $7 D012722
655    _2
$a časopisecké články $7 D016428
700    1_
$a Svehla, P $u b Department of Agro-Environmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic.
700    1_
$a Catrysse, M $u c Department of Biosystems Engineering , Ghent University , Ghent , Belgium.
700    1_
$a Prochazkova, L $u a Department of Water Technology and Environmental Engineering, University of Chemistry and Technology , Prague , Czech Republic.
700    1_
$a Radechovska, H $u b Department of Agro-Environmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic.
700    1_
$a Jenicek, P $u a Department of Water Technology and Environmental Engineering, University of Chemistry and Technology , Prague , Czech Republic.
700    1_
$a Bartacek, J $u a Department of Water Technology and Environmental Engineering, University of Chemistry and Technology , Prague , Czech Republic.
773    0_
$w MED00180216 $t Environmental technology $x 1479-487X $g Roč. 40, č. 6 (2019), s. 673-682
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29157140 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011093943 $b ABA008
999    __
$a ok $b bmc $g 1452182 $s 1074072
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 40 $c 6 $d 673-682 $e 20171121 $i 1479-487X $m Environmental technology $n Environ Technol $x MED00180216
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...