Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Random protein sequences can form defined secondary structures and are well-tolerated in vivo

V. Tretyachenko, J. Vymětal, L. Bednárová, V. Kopecký, K. Hofbauerová, H. Jindrová, M. Hubálek, R. Souček, J. Konvalinka, J. Vondrášek, K. Hlouchová,

. 2017 ; 7 (1) : 15449. [pub] 20171113

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035534

The protein sequences found in nature represent a tiny fraction of the potential sequences that could be constructed from the 20-amino-acid alphabet. To help define the properties that shaped proteins to stand out from the space of possible alternatives, we conducted a systematic computational and experimental exploration of random (unevolved) sequences in comparison with biological proteins. In our study, combinations of secondary structure, disorder, and aggregation predictions are accompanied by experimental characterization of selected proteins. We found that the overall secondary structure and physicochemical properties of random and biological sequences are very similar. Moreover, random sequences can be well-tolerated by living cells. Contrary to early hypotheses about the toxicity of random and disordered proteins, we found that random sequences with high disorder have low aggregation propensity (unlike random sequences with high structural content) and were particularly well-tolerated. This direct structure content/aggregation propensity dependence differentiates random and biological proteins. Our study indicates that while random sequences can be both structured and disordered, the properties of the latter make them better suited as progenitors (in both in vivo and in vitro settings) for further evolution of complex, soluble, three-dimensional scaffolds that can perform specific biochemical tasks.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035534
003      
CZ-PrNML
005      
20191008113043.0
007      
ta
008      
191007s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-017-15635-8 $2 doi
035    __
$a (PubMed)29133927
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Tretyachenko, Vyacheslav $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague 2, Czech Republic. Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
245    10
$a Random protein sequences can form defined secondary structures and are well-tolerated in vivo / $c V. Tretyachenko, J. Vymětal, L. Bednárová, V. Kopecký, K. Hofbauerová, H. Jindrová, M. Hubálek, R. Souček, J. Konvalinka, J. Vondrášek, K. Hlouchová,
520    9_
$a The protein sequences found in nature represent a tiny fraction of the potential sequences that could be constructed from the 20-amino-acid alphabet. To help define the properties that shaped proteins to stand out from the space of possible alternatives, we conducted a systematic computational and experimental exploration of random (unevolved) sequences in comparison with biological proteins. In our study, combinations of secondary structure, disorder, and aggregation predictions are accompanied by experimental characterization of selected proteins. We found that the overall secondary structure and physicochemical properties of random and biological sequences are very similar. Moreover, random sequences can be well-tolerated by living cells. Contrary to early hypotheses about the toxicity of random and disordered proteins, we found that random sequences with high disorder have low aggregation propensity (unlike random sequences with high structural content) and were particularly well-tolerated. This direct structure content/aggregation propensity dependence differentiates random and biological proteins. Our study indicates that while random sequences can be both structured and disordered, the properties of the latter make them better suited as progenitors (in both in vivo and in vitro settings) for further evolution of complex, soluble, three-dimensional scaffolds that can perform specific biochemical tasks.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a cirkulární dichroismus $7 D002942
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a databáze proteinů $7 D030562
650    _2
$a datové soubory jako téma $7 D066264
650    12
$a molekulární modely $7 D008958
650    _2
$a nukleární magnetická rezonance biomolekulární $7 D019906
650    12
$a peptidová knihovna $7 D019151
650    _2
$a proteinové agregáty $7 D066329
650    _2
$a sbalování proteinů $7 D017510
650    12
$a sekundární struktura proteinů $7 D017433
650    _2
$a rekombinantní proteiny $x chemie $x izolace a purifikace $x toxicita $7 D011994
650    _2
$a rozpustnost $7 D012995
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vymětal, Jiří $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague 2, Czech Republic. Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Bednárová, Lucie $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Kopecký, Vladimír $u Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic.
700    1_
$a Hofbauerová, Kateřina $u Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic.
700    1_
$a Jindrová, Helena $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague 2, Czech Republic. Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Hubálek, Martin $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Souček, Radko $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Konvalinka, Jan $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague 2, Czech Republic. Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Vondrášek, Jiří $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
700    1_
$a Hlouchová, Klára $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague 2, Czech Republic. klara.hlouchova@natur.cuni.cz. Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic. klara.hlouchova@natur.cuni.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 15449
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29133927 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191008113459 $b ABA008
999    __
$a ok $b bmc $g 1452194 $s 1074084
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 7 $c 1 $d 15449 $e 20171113 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...