-
Je něco špatně v tomto záznamu ?
Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach
V. Shevchenko, T. Mager, K. Kovalev, V. Polovinkin, A. Alekseev, J. Juettner, I. Chizhov, C. Bamann, C. Vavourakis, R. Ghai, I. Gushchin, V. Borshchevskiy, A. Rogachev, I. Melnikov, A. Popov, T. Balandin, F. Rodriguez-Valera, DJ. Manstein, G....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Freely Accessible Science Journals
od 2015
PubMed Central
od 2015
Europe PubMed Central
od 2015
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2015
PubMed
28948217
DOI
10.1126/sciadv.1603187
Knihovny.cz E-zdroje
- MeSH
- Archaea metabolismus MeSH
- buněčné linie MeSH
- Escherichia coli metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- konformace proteinů MeSH
- lidé MeSH
- liposomy MeSH
- molekulární modely MeSH
- optogenetika * metody MeSH
- protonové pumpy metabolismus MeSH
- protony MeSH
- retina metabolismus MeSH
- rodopsin chemie metabolismus MeSH
- spektrální analýza MeSH
- světlo MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.
European Synchrotron Radiation Facility 38027 Grenoble France
Friedrich Miescher Institute for Biomedical Research Basel Switzerland
Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam Netherlands
Institute for Biophysical Chemistry Hannover Medical School Hannover Germany
Institute of Complex Systems ICS 6 Structural Biochemistry Research Centre Jülich Jülich Germany
Max Planck Institute of Biophysics Frankfurt am Main Germany
Moscow Institute of Physics and Technology Dolgoprudny Russia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035576
- 003
- CZ-PrNML
- 005
- 20191008111329.0
- 007
- ta
- 008
- 191007s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1126/sciadv.1603187 $2 doi
- 035 __
- $a (PubMed)28948217
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Shevchenko, Vitaly $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany. Institute of Crystallography, RWTH Aachen University, Aachen, Germany. Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- 245 10
- $a Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach / $c V. Shevchenko, T. Mager, K. Kovalev, V. Polovinkin, A. Alekseev, J. Juettner, I. Chizhov, C. Bamann, C. Vavourakis, R. Ghai, I. Gushchin, V. Borshchevskiy, A. Rogachev, I. Melnikov, A. Popov, T. Balandin, F. Rodriguez-Valera, DJ. Manstein, G. Bueldt, E. Bamberg, V. Gordeliy,
- 520 9_
- $a Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.
- 650 _2
- $a Archaea $x metabolismus $7 D001105
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a vysokoúčinná kapalinová chromatografie $7 D002851
- 650 _2
- $a Escherichia coli $x metabolismus $7 D004926
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a liposomy $7 D008081
- 650 _2
- $a molekulární modely $7 D008958
- 650 12
- $a optogenetika $x metody $7 D062308
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a protonové pumpy $x metabolismus $7 D017494
- 650 _2
- $a protony $7 D011522
- 650 _2
- $a retina $x metabolismus $7 D012160
- 650 _2
- $a rodopsin $x chemie $x metabolismus $7 D012243
- 650 _2
- $a spektrální analýza $7 D013057
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mager, Thomas $u Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- 700 1_
- $a Kovalev, Kirill $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany. Institute of Crystallography, RWTH Aachen University, Aachen, Germany. Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- 700 1_
- $a Polovinkin, Vitaly $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany. Moscow Institute of Physics and Technology, Dolgoprudny, Russia. Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.
- 700 1_
- $a Alekseev, Alexey $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany. Institute of Crystallography, RWTH Aachen University, Aachen, Germany. Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- 700 1_
- $a Juettner, Josephine $u Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- 700 1_
- $a Chizhov, Igor $u Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.
- 700 1_
- $a Bamann, Christian $u Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- 700 1_
- $a Vavourakis, Charlotte $u Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
- 700 1_
- $a Ghai, Rohit $u Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
- 700 1_
- $a Gushchin, Ivan $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany. Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- 700 1_
- $a Borshchevskiy, Valentin $u Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- 700 1_
- $a Rogachev, Andrey $u Moscow Institute of Physics and Technology, Dolgoprudny, Russia. Joint Institute for Nuclear Research, Dubna, Russia.
- 700 1_
- $a Melnikov, Igor $u European Synchrotron Radiation Facility, 38027 Grenoble, France.
- 700 1_
- $a Popov, Alexander $u European Synchrotron Radiation Facility, 38027 Grenoble, France.
- 700 1_
- $a Balandin, Taras $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
- 700 1_
- $a Rodriguez-Valera, Francisco $u Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain.
- 700 1_
- $a Manstein, Dietmar J $u Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany. Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany.
- 700 1_
- $a Bueldt, Georg $u Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- 700 1_
- $a Bamberg, Ernst $u Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- 700 1_
- $a Gordeliy, Valentin $u Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany. Moscow Institute of Physics and Technology, Dolgoprudny, Russia. Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.
- 773 0_
- $w MED00188818 $t Science advances $x 2375-2548 $g Roč. 3, č. 9 (2017), s. e1603187
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28948217 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191008111745 $b ABA008
- 999 __
- $a ok $b bmc $g 1452236 $s 1074126
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 3 $c 9 $d e1603187 $e 20170922 $i 2375-2548 $m Science advances $n Sci Adv $x MED00188818
- LZP __
- $a Pubmed-20191007