Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms

A. Damborská, MI. Tomescu, E. Honzírková, R. Barteček, J. Hořínková, S. Fedorová, Š. Ondruš, CM. Michel,

. 2019 ; 10 (-) : 548. [pub] 20190809

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035736

Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-Åsberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035736
003      
CZ-PrNML
005      
20191010113841.0
007      
ta
008      
191007s2019 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fpsyt.2019.00548 $2 doi
035    __
$a (PubMed)31474881
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Damborská, Alena $u Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland. Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.
245    10
$a EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms / $c A. Damborská, MI. Tomescu, E. Honzírková, R. Barteček, J. Hořínková, S. Fedorová, Š. Ondruš, CM. Michel,
520    9_
$a Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-Åsberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Tomescu, Miralena I $u Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland.
700    1_
$a Honzírková, Eliška $u Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.
700    1_
$a Barteček, Richard $u Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.
700    1_
$a Hořínková, Jana $u Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.
700    1_
$a Fedorová, Sylvie $u Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.
700    1_
$a Ondruš, Šimon $u Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.
700    1_
$a Michel, Christoph M $u Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland. Lemanic Biomedical Imaging Centre (CIBM), Geneva, Switzerland.
773    0_
$w MED00174602 $t Frontiers in psychiatry $x 1664-0640 $g Roč. 10, č. - (2019), s. 548
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31474881 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191010114300 $b ABA008
999    __
$a ind $b bmc $g 1452396 $s 1074286
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 10 $c - $d 548 $e 20190809 $i 1664-0640 $m Frontiers in psychiatry $n Front Psychiatry $x MED00174602
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...